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Prelude

E ARE AN EXTRAORDINARY SPECIES. Injust about any

climate, from the freezing colds of the Arctic to the

dazzling heat of the Sahara, human populations

thrive. On virtually every stretch of land you could

visit, you would find more of us: humans. Far from
a colorless, uniform mass, it is a spectacular display of cultural diversity.
You can find people with hundreds of gods and those with no gods; people
living in skyscrapers and those who carry their homes; those who live in
mountains, and those who fare seas. But no matter where you go, you will
find that they have language and music.

Music and language exemplify the richness and diversity of human
life. There are over six thousand languages in the world, and orders more
must have existed since our ancestors started to talk. There are languages
without sounds and languages with dozens of them; languages that pack
into one word, which would require several sentences in another. Some
use east and west instead of left and right; in others, verbs do not live in
the past, present, or future. There are languages with an endless inventory
of number terms and those without any. But all these languages have
atleast one thing in common: children pick them up spontaneously and
seemingly without effort. The case for music is not that different. You
can find music without melody and music without a beat. Music with
dozens of notes in an octave or just two. Music with conflicting meters
and music without meters. What sounds pleasant in one type of music
could be awfully dissonant in another. But while most of us can move to
a beat or hum a melody, your dog can’t—and that is certainly no lack of
exposure.

Language and music are not the answer to what it means to be human,
but they are an important part of it. Why so? Why did humans evolve
to make music? And how so? I will not answer such ‘big questions’ in
this dissertation: they are the questions that have motivated some of the
smaller questions that I will address. The idea, in short, is this. If you want



to understand the evolution of music, it helps to study what sorts of music
exist, how musical traditions—or musics—relate, and how they compare.
Are there properties that all musical traditions share, or hardly any share?
To answer such questions, you have to start measuring musics: manually,
perhaps, or automatically, using computational methods. And that is the
central topic of this dissertation: developing computational methods to
measure musics, from the modality of chants or shapes of melodies to
inventories of rhythmic motifs and even an intricate rarity.

1.1 Musicand musicality

But first—music? I imagine that a biologist would characterize music as a
behavior. Comparable perhaps to how some musicologists prefer to see
music as an activity, not an object, and refer to it with the verb musicking
(Small, 1998). Musical behavior can take many forms: singing, dancing,
playing an instrument, listening, or perhaps just silently studying sheet
music or preparing a performance.

Much of our musical behavior is learned socially from other individuals
and shared by a group. In biology, such behavior is known as cultural
behavior, in contrast to for example instinctive behavior (e.g., Hoppitt &
Laland, 2013). Itis typical for much of human behavior but can also be
found in other species, from whales and dolphins (Whitehead & Rendell,
2015) to perhaps even bees (Alem et al., 2016; Loukola et al., 2017). Cultural
behavior results in a dual inheritance: individuals inherit not only their
genetic makeup (biological inheritance) but also some of their behaviors
(cultural inheritance). When thinking about cultural behavior, it may
be helpful to distinguish the cultural phenomenon from the biological
abilities that underly it. This distinction is commonly made for language,
perhaps one of the better examples of a “cultural system that runs on
biological infrastructure” (Levinson & Dediu, 2013).

Aswith languages, accumulating evidence suggests that musics build on
a biological infrastructure known as musicality (Honing, 2018). Musicality
does not refer to some special ability only gifted musicians have. It refers
to the common, widely shared abilities that allow humans to engage in
musical behavior, whether playing (production) or just listening (percep-
tion). The abilities are thought to be so common that people lacking them
have become of scientific interest: the tone-deaf or those unable to hear
a beat. Honing (2018) defines musicality as “a natural, spontaneously
developing set of traits based on and constrained by our cognitive and
biological system”. This definition adopts a multi-component perspective:
it suggests thinking of musicality as composed of multiple components or
traits, such as beat perception, relative pitch perception, or vocal learn-
ing. A prominent research agenda in the field now aims to determine
which components underly human musical behavior or, differently put,
to characterize the musicality phenotype (Honing, 2018).
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Turning to “the musical systems of cultures” (Nettl, 2005), what pre-
cisely are musics? In terms of cultural behavior, a music would be some-
thing like the totality of musical behavior shared by a cultural group. Its
rich cross-cultural diversity makes it notoriously hard to pinpoint what
counts as musical behavior—not to mention the many efforts to stretch
its boundaries. A pragmatic escape assumes that musical behavior can be
reliably recognized by members of a cultural group or trained ethnomu-
sicologists. To further characterize musics, one could adopt a typological
perspective on musics, in analogy with a multi-component perspective on
musicality. Just like a multicomponent perspective breaks down musi-
cality into different parts and studies those across species, a typological
perspective breaks down musical behavior into a set of characters or fea-
tures and examines their variability across musics.

This is by no means a novel agenda: it was a central concern of the
discipline of comparative musicology that blossomed almost a century ago
(Nettl, 2005; Savage, 2019), and resulted in typologies that are still used
today, such as the Hornbostel-Sachs instrument classification. After the
Second World War, the field adopted the new name of ‘ethnomusicology’
and moved focus to in-depth fieldwork and culture-specific description.
In the words of Bruno Nettl (2005), “we study each music in its own terms,
and we try to learn to see it as its own society understands it” (Nettl, 2005,
p- 13). Comparison still had an important role to play, but a more rela-
tivistic one. Interest in cross-cultural comparison has recently resurfaced
and even led to an attempt to revive comparative musicology (see e.g.,
Savage & Brown, 2013). This new comparative musicology also takes a
typological perspective of musics, and is heavily invested in classifying,
and comparing musical traditions. But as it aims for global comparisons,
itis bound to understand musics not on their own terms, but in general
terms: it develops concepts that are applicable cross-culturally.

In this dissertation, we focus on a few musical features and aim to
characterize these computationally: primarily mode and contour, but
also rhythmic and melodic motifs. We will focus almost exclusively on
musical scores, which means that the term ‘music’ will be used in a narrow
sense: that specific product of musical behavior that can be captured in a
musical score. And as any musician used to notated music knows, that
is fairly limited. It strips the rich behavior of much of its context and
meaning. However, while musical behavior may be much more than a
formal structure, it still 4as formal structures, and we will focus on those
in this dissertation.

1.2 Outline

The form of this dissertation is somewhat unusual. Indeed, I prefer to call
this work a ‘dissertation’ and not a ‘thesis’ as I do not put forward one
central thesis for which each of the chapters provides arguments. Instead,
the core of this dissertation consists of a series of interconnected articles.
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I have chosen to interleave those articles with interludes, as illustrated in
Figure 1.1. The articles, evenly numbered, can be quite formal, while the
odd interludes are written more freely. Although one could think of the
interludes as divertimenti, they are more than academic amusement: the
interludes describe the projects that have not yet fully matured but still
deserve a place in this dissertation.

cHAPTER2 The first two chapters lay out the groundwork by introducing
the main corpora studied in this dissertation. Chapter 2 presents two
plainchant corpora, the Cantus Corpus and the GregoBase Corpus, along
with a Python package that parses plainchant formats. The corpora and
software are illustrated in two small case studies. One of the case studies
confirms the melodic arch hypothesis in plainchant: phrases from this reper-
toire indeed tend to be arch-shaped, as the hypothesis suggests. The case
study also paves the way for more in-depth studies of melodic contour
representations in chapter 6 and chapter 8.

CHAPTER 3: INTERLUDE  This interlude discusses the Catafolk project that
aims to collect consistent metadata from folk song corpora, allowing one
to bundle many corpora into one larger cross-cultural corpus. The project
is a proof of concept and primarily contains subsets of the Essen Folk-
song Collection and the Densmore Collection, which will be used in later
chapters.

cHAPTER4 This chapter attempts to measure the central organizational
structure of plainchant: the eight modes. Modes are melody gypes that lie
somewhere between abstract scales and concrete melodies. We compare
three different ways to classify musical mode: two approaches that largely
view mode as a scale and one distributional approach that focuses on its
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melodic character. We find that this latter approach can still determine
mode fairly accurately even when all pitch information has been discarded.
However, this only really works when the mode is segmented in the ‘right’
way: in units corresponding to textual units such as syllables and words.
We also propose a simple attribution method that visually explains why a
chant may have been classified to a particular mode. All in all, the chapter
confirms that mode is a melodic phenomenon, but it also suggests that
this repertoire is built up from small melodic units, comparable perhaps
to how a sentence is composed of syllables and words.

CHAPTER 5: INTERLUDE  Following the linguistic analogy, this interlude
takes on plainchant using a neural language model, partly because such
a model would also be capable of generating artificial chant. But the
interlude also tries to understand what kind of representations the model
learns. Although preliminary, the learned chant representations suggest
that mode and genre are the two primary axes along which chants are
organized.

cHAPTER6 The next chapter takes a more general perspective on the axes
along which melodies and their shapes are best described. We analyze
the principal components of melodies, represented as fixed-length pitch
sequences and find that the principal components closely approximate co-
sine functions of increasing frequency. After explaining why the variance
in melodies may be best explained by cosines, we propose a new contour
representation that we call cosine contours. We illustrate the representation
in three small case studies.

CHAPTER7: INTERLUDE ~ Cosine contours can be seen as a form of continuous
music typology: they describe the musical feature ‘contour shape’ in a
continuous fashion. The next three chapters continue this line of thought.
First, we look at thythmic motif frequencies. We visualize rhythmic data
from music and animal vocalizations by plotting all motifs of three succes-
sive temporal intervals in a so-called rhythm triangle. Thinking in terms
of motifs leads us to a measure of isochronicity—how steady, pulse-like a
rhythm is—that generalizes the nPVI, a more commonly used measure.
Our measure of isochronicity produces a cross-section of the rhythmic
variability in music and animal vocalizations. Throughout the interlude,
we discuss a question that has attracted attention recently: are rhythms
in a given dataset categorical? This effectively questions the presence of
statistical modes in some continuous space: the rhythm triangle, in this
case.

cHAPTER8 The next chapter also investigates the presence of statistical
modes, but now in the space of melodic contours. What sort of typology
one can best use to describe the distribution of melodic phrase contours?
Rephrasing this as a clustering problem, we propose a way to measure the
presence of statistical modes—but find none. This suggests that melodic
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phrase contours do not cluster into separate types, rendering any dis-
crete typology somewhat arbitrary. This, combined with shortcomings in
commonly used discrete typologies, suggest that one should instead view
melodic contour as a continuous phenomenon.

CHAPTER 9: INTERLUDE  After measuring rhythmic motifs in chapter 7, this
interlude measures melodic motifs. It visualizes melodic units of three
successive notes (or two intervals) in what might be called a melody square.
Though simple, such squares are informative enough to group corpora by
their rough area of origin. More importantly, the melody squares readily
suggest common melodic patterns as well as rare ones. The music of Arvo
Part may be a musical rarum, as it hides melody squares with a surprising
symmetry.

cHAPTER10 The final chapter is a case study of a single piece, Summa
by Arvo Part. So far this dissertation developed formal ways to measure
‘informal’ music, but formal methods may well be indispensable to the
study of certain formal music. To show why, we attempt to reconstruct
Summa using formal procedures: an algorithmic reconstruction. This
finale also closes the circle: Part’s tintinnabuli style takes inspiration from
the plainchant with which we will soon start this dissertation.

Several of these chapters are directly based on published articles, while
others have not been presented elsewhere before. At the end of every
chapter, I have included references to the relevant publications, pointers
to data and code, and also listed author contributions.
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Chant corpora

This chapter presents chant21, a Python package to support
the plainchant formats gabc and Volpiano in music21, to-
gether with two large corpora of plainchant. The Cantus-
Corpus contains over 60,000 medieval melodies collected
from the Cantus database, encoded in the Volpiano typeface.
The GregoBaseCorpus contains over 9,000 transcriptions from
more recent chant books in the gabc format. Chant21 converts
both formats to music21 while retaining the textual structure
of the chant: its division into sections, words, syllables, and
neumes. We present two case studies. First, we report evi-
dence for the melodic arch hypothesis from the GregoBase
Corpus. Second, we analyze connections between differentie
and antiphon openings in the Cantus Corpus and show that
the systematicity of the connection can be quantified using
an entropy-based measure.

Introduction 12 e Corpora 13 e Chant21 14 e Case
study 1: The melodic arch 15 e Case study 2: Differentize 17
e Conclusions 19



2.1 Introduction

If one thing stands out about our species’ musical behavior, it is its ubiq-
uity: all cultures seem to make music (Mehr et al., 2019). Yet, our under-
standing of music from corpus studies is almost entirely based on Western
classical or popular music (Savage, 2022). Part of the explanation might
be the scarcity of large corpora from other traditions. Recent efforts have
been addressing this, often under the header of computational ethnomusi-
cology (Tzanetakis et al., 2007). We contribute to the efforts to diversify by
converting two existing databases of Christian plainchantinto a form suit-
able for corpus analysis in popular tools: the medieval Cantus Corpus and
the more recent GregoBase Corpus. We also release the Python package
Chanta1 for working with these corpora in music21. Finally, we present
two case studies illustrating their usefulness. First, we show that melodic
phrases have arch-shaped contours in the GregoBase Corpus, confirming
the general melodic arch hypothesis (Huron, 1996). Second, we focus on a
particular problem in chant scholarship and revisit the relation between
so-called differentiz and antiphon openings (Shaw, 2018) in the Cantus
Corpus.

The plainchant on which we focus is, indeed, another European tra-
dition. But it is sufficiently distant from Western classical and popular
music, if not in time, then certainly in its musical language, to be studied
as a separate tradition (Jeffery, 1992). The music goes back well over a
thousand years, to the ninth century, when the first melodies appear in
manuscripts. Multiple chant traditions had coexisted in Europe before
then, with their own variants of music and texts, but many were (partly
deliberately) displaced by what became known as Gregorian chant. The
monophonic melodies are rooted in the recitation of sacred Latin texts,
which formed the backbone of the liturgy. The first manuscripts therefore
only record the text, but later sketches of the melodies appear between
the lines of the text. These sketches consisted of so-called neumes, figures
indicating the contour of small melodic motifs but not their exact pitches.
Later, these neumes were placed on staff lines to also indicate their ex-
act pitches. This developed into both the modern five-line notation and
the four-line square notation used in chant books today. The corpora we
present employ both types of notation (Figure 2.1).

The chant repertoire was, sometimes actively, organized along several
lines (Hiley, 2009). First of all, chants were classified into a system of eight
modes, usually grouped in four pairs (Dorian, Phrygian, Lydian, Mixoly-
dian). Two paired modes use the same final note but differ in their typical
range: the so-called authentic one moves mostly above the final, and the
plagal one around it. This already shows that modes are melody types, more
than just the church scales to which they are sometimes associated (Pow-
ers et al,, 2001). We discuss modes in more detail in chapter 4. Second,
different parts of the liturgy use different chant genres, from the short,
syllabic antiphons to the elaborate responsories. Some genres, like an-
tiphons, consisted of freely composed melodies, but others, like psalms,

12 Chapter2 ARTICLE Chantcorpora



A. Cantus: Volpiano transcriptions
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B. GregoBase: gabc transcriptions
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used standard melodic formulae: a reciting tone decorated by an opening
and closing gesture particular to the mode of the chant.

Most computational studies of plainchant have been concerned with
optical music recognition of medieval manuscripts. But several recent
studies have addressed more musicological questions, also in other chant
traditions: Panteli and Purwins (2013) analyzed scale intonation in Byzan-
tine chant, and Bir6 et al. (2012) studied cadences in Torah trope. Closer to
the present work, van Kranenburg and Maessen (2017) used perplexities
under an n-gram model to classify five early Christian chant traditions.
We hope that the two corpora and software we will now present inspire
more computational studies of plainchant.

2.2 Corpora

The first corpus we present, the Cantus Corpus, is in essence a cleaned-
up export of the Cantus database (Lacoste et al., 1987—2019). This is an
online index of the many medieval manuscripts kept in libraries across
the world. As of this writing, it contains 497,071 chants; the database
contains records for almost all, with information on where they are found
in which manuscript, but also on things like their incipit, liturgical genre,
feast, mode, and a Cantus ID to be able to identify the same chants across
manuscripts and databases. For 63,628 chants (13%) the melody has also
been (partially) transcribed using Volpiano.'

Volpiano is a typeface that renders text as notes on five staff lines and
was specifically developed for notating plainchant. Several conventions
are commonly adhered to, such as the use of three, two, and one hyphen(s)
toindicate word, syllable, and neume boundaries respectively (Figure 2.14).
This allows the music to be aligned to the manuscript text, which is tran-
scribed separately. Many of these conventions have been fixed in the elab-
orate transcription guidelines of the Cantus database, and this is what
we refer to as the (Cantus) Volpiano format. The guidelines and editorial
reviews ensure a high transcription quality (Helsen & Lacoste, 2011).

Corpora 13

FIGURE 2.1—Volpiano and
gabc. Two versions of Alma
redemptoris mater. (A) The
Cantus Corpus contains
melodic transcriptions
from medieval manuscripts
notated in Volpiano: a
simple five-line notation.
(B) The GregoBaseCorpus
contains scores from recent
chant books in the gabc
format, an elaborate format
for four-line square notation.

1 Of the transcribed chants,
37% contain fewer than

30 notes and are probably
incipits.



FIGURE 2.2 —Chant21in
action. Chant21improves
the support for plainchant
in Music21 with converters
for gabc and Volpiano. It
uses a chant representation
that divides the chantinto
sections, words, syllables,
and neumes. This structure
can be interactively explored
inJupyter notebooks.

[1]: import chant21l

from music21 import converter
kyrie = converter.parse('kyrie.gabc"')
kyrie.show('html', showOptions=True)

Show:

=

E

iij.

metadata sections words syllables

The Cantus database is easy to use for chant scholars, but not nec-
essarily for computational purposes: it is continuously updated, which
is actually inconvenient when replication is a concern. We, therefore,
scraped the database via its aAp1 and converted it to a set of clean csv files
which we release as the Cantus Corpus. Releases are versioned as we plan
to occasionally release newer versions.

Our second corpus, GregoBase Corpus, again repackages and versions
an existing database: GregoBase (Berten, 2013—2020), which provides a
complementary perspective on chant. Whereas the Cantus database maps
the complexity of medieval manuscripts in a simplified notation (Volpi-
ano), GregoBase consists of modern reinterpretations of the Gregorian
repertoire: the one found in chant books like the Liber Usualis. Such books
are indented for practical use and use the full scope of square notation,
including things like breathing marks, different note shapes, rhythmic
signs, and clef changes.

The GregoBase website currently hosts 9139 chant transcriptions from
29 books, including the complete Liber Usualis. The transcriptions are
written in gabc (Figure 2.1B), a plain text format for square chant nota-
tion, developed for the typesetting system Gregorio. We converted the
GregoBase database to a set of easy-to-use csv files, but also to separate
gabc files that include metadata such as the mode, liturgical genre, and
all books a chant appears in.

2.3 Chant21

To make it easier to work with the two corpora we present the Python
package chant21 which improves the support for gabc and Volpiano in
music21 (Cuthbert & Ariza, 2010), by now the go-to toolkit for symbolic
computational musicology. Chant21 consists of parsers for (1) gabc and (2)
Volpiano; (3) a way to align text to music notated in Volpiano; (4) a chant
representation that retains the subdivision in sections, words, syllables,
and neumes; (5) a way to export this representation to HTML, which allows
for fast visualization in Jupyter notebooks.

14 Chapter2 ARTICLE Chantcorpora
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Writing parsers for the elaborate gabc syntax and the informal Volpi-
ano guidelines is not straightforward. After experimenting with custom
parsers, we decided to specify the syntax of both formats as parser expres-
sion grammars (PEGs) (Ford, 2004).> Specifying the syntax in a grammar
makes it transparent and much easier to maintain. PEGs resemble context-
free grammars but use a deterministic choice operation to make parse
trees unambiguous. After specifying the grammar, we delegate the actual
parsing to the PEG parser Arpeggio (Dejanovié et al., 2016). The resulting
parsers are reliable: their error rates are well under 1% when evaluated on
the Cantus Corpus and GregoBase Corpus and most failures are caused by
Syntax errors.

The parse trees of both gabc and Volpiano strings are then converted
to music21 objects, but using a custom, hierarchical chant representa-
tion that groups the music into sections, words, syllables, and neumes.
This structure can be useful in computational studies (as we will see in
chapter 4) but is also needed to align Volpiano to the text. The Cantus
database has guidelines for full-text transcriptions: how to for example
mark section boundaries, or missing pitches. We use another PEG-based
parser to parse the text and then split all words in syllables using the Latin
syllabifier from the Classical Language Toolkit (Johnson et al., 2014—2021).
After all this, the text is divided into sections, words, and syllables, which
we match to their counterparts in the music.

Finally, inspired by the Cantus website, chant21 can export the hierar-
chical chant representation to HTML, using Volpiano to display the music.
This is particularly useful in Jupyter notebooks: it results in much faster
typesetting and allows you to interactively explore the structure of the
chant. Afterinstalling Volpiano and running pip install chant21,chant21
is ready to be used (Figure 2.2).

2.4 Casestudy 1: The melodicarch

To illustrate the usefulness of the presented corpora and software, we
discuss two case studies. The first concerns the melodic arch hypothesis: the
claim that the pitch contour of musical phrases across cultures tends to
be arch-shaped. David Huron (1996) was the first to present quantitative
support for this phenomenon, based on an analysis of 6000, mostly Ger-
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FIGURE 2.3 —Contour repre-
sentation. Contours consist
of 50 pitches, sampled af-
ter normalizing the phrase
duration and transposing
the phrase by its mean pitch.
Thisisillustrated in the first
two phrases of the antiphon
Alma mater redemptoris. The
plots below the score show
the contours in black over a
red piano roll.

2 This idea was borrowed
from gabc-parser, but we
had to completely rewrite the
grammar as gabc-parser
only implements the basic
features of gabc and left
many chants unparseable.



FIGURE 2.4 — Average phrase
contours. The melodicarch
hypothesis seems to hold in
Gregorian chant. Averaging
all phrase contours results
in arch-shaped contours
(colored), whereas averaging
random segments (grey)
yields more or less flat
contours. This isillustrated
for four chant genres.

Antiphons

Hymns

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Introits Responsories

pitch (semitones from mean)

——— phrases
—— baseline

0.25 std. dev.

T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
position in phrase

man folksongs from Essen. Later studies confirmed the hypothesis in the
2000 Chinese folksongs that were later added to Essen (Tierney et al., 2011),
and a small global sample of 35 recordings from the Garland Encyclopedia
(Savage et al., 2017). It has been suggested that the melodic arch is the
result of general motor constraints (Tierney et al., 2011). Those make it
easier to produce rising pitch contours at the start of a phrase when the
pressure beneath the vocal folds is rising, and falling contours when the
pressure drops towards the end. These constraints could imply a weak
tendency for phrases to be arch-shaped (or descending) on average, even
though individual phrases can take many shapes.

We analyze if these findings extend to Gregorian chant and focus on
the Liber Usualis from the GregoBase Corpus (vo.4). We extracted phrases
using the explicit breathing marks (pausas) in chant notation. As rhythmic
interpretations of chant vary, we assigned all notes in chants equal dura-
tion. We removed duplicate phrases and phrases with fewer than 4 notes,
and then randomly sample 3000 phrases per chant genre. Finally, we
normalized all phrases to have duration 1 and mean pitch o, and sampled
50 equally spaced pitches from the resulting contour (Savage et al., 2017;
Tierney et al., 2011), as illustrated in Figure 2.3.

We average the 3000 normalized contours of a given genre and compare
this to the following random baseline. We randomly segment every chant
by successively sampling segment lengths from a Poisson distribution
approximating the actual phrase lengths. The first and final (random) seg-
ments of each chant are omitted. This results in a set of random segments
whose lengths are similar to actual phrases, but whose boundaries are
unlikely to overlap with actual phrase boundaries. This keeps the melody
intact and only shifts phrase boundaries—rather than shuffling all pitches
(Savage et al., 2017).

Figure 2.4 shows the average phrase contours (coloured) compared to
the average random segments (grey) for four chant genres. Whereas the
actual phrases are clearly arch-shaped on average, the baseline is pretty
much flat. The overall size of the arch is small (around 2 semitones), but
similar to earlier findings (Savage et al., 2017; Tierney et al., 2011). The
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average contours appear to differ across genres, but it requires further
analyses to see if these differences are significant. The comparison with
the random baseline does however make clear that phrase boundaries
have a noticeable and consistent effect on the shape of phrase contours.
In sum, these results from this corpus of plainchant are consistent with
the melodic arch hypothesis.

2.5 Casestudy 2: Differentiee

Our second case study revisits a particular problem in chant scholarship:
the relation between so-called differentiz and antiphon openings (Shaw,
2018). Every week, monks would sing a cycle of 150 psalms to melodic
formulae known as psalm tones. An antiphon was sung before the psalm
and repeated afterward. The differentiz is the very end of the psalm, al-
ways set to the words szculorum amen (abbreviated as euouae) and sung
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FIGURE 2.5 — Differentia-
antiphon connections
inall modes. Each line
represents the last 6 notes
of the differentia (colored),
followed by the return to
the antiphon (black), and 5
more notes of the antiphon
(colored). We sample and
show 200 connections per
mode, jittered vertically to
reveal clusters of overlapping
contours.



A. Entropy in a moving window of 4 notes B. Entropy H_;, of the
differentia—antiphon
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FIGURE 2.6 — Entropy of the chant. (A) We move a sliding window of 4 notes across the chant
and estimate the unpredictability in the window using the entropy H,., . ; (detailsin the
main text). This shows that differentiee (t < —4) are more predictable than antiphons
(¢ > 0). (B) Highlights the window containing the last 3 notes of the differentia and the
first note of the antiphon, showing for example that the connection in mode 6 is more
predictable than in mode 4.

directly before the repetition of the antiphon. The order, in short, was
always antiphon—psalm—differentia—antiphon. A question dividing chant
scholars is whether there is a systematic relation between differentize
and antiphon openings: do certain psalm endings usually imply certain
antiphon openings?

Shaw (2018) conducted the first large-scale data analysis and suggests
that there is indeed a systematic connection for mode 1. Using chant21 we
can extend this to all eight modes by visualizing the connections directly.
We selected all 7102 antiphons from the Cantus Corpus (vo.1) thathad a
complete Volpiano transcription, lyrics ending on variants of aeouae, and
a ‘simple’ mode (e.g., not transposed). We extract the last 6 pitches of the
differentia and concatenate the first 6 notes of the antiphon to obtain the
(differentia—antiphon) connections. We transpose all connections so that
the final has pitch o.

Figure 2.5 shows the connections for all modes. The systematicity seems
to differ between modes. For example, mode 6 exhibits a very systematic
connection: only one differentia is really ever used, and this virtually
always leads to the same starting pitch of the antiphon (the final, 7). Mode
5, on the other hand, also uses mostly one differentia, but this leads to
three possible antiphon openings. This is certainly less systematic but
still more predictable than a random transition.

We can quantify this difference in systematicity. For a given mode,
consider all the segments s_;., = (n_3,n_,,n_;,1,) spanning the last
three notes of the differentia and the first of the antiphon. If p(s_s.q)
denotes the relative frequencies of all such segments, then we can measure
the systematicity of a connection using its entropy H(p(s_j.,)) or H_s., for
short. The entropy effectively measures the unpredictability of the chant
in the segment from position —3 to position 0. A higher entropy indicates
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a less systematic connection, so we would expect mode g, for example, to
have higher entropy than mode 6. Figure 2.68 confirms this.

Next, we measure the entropy H,.,, 5 in a sliding window of four notes,
starting at any position ¢ and not only ¢ = —3 as we did above. This
allows us to analyze how unpredictable different parts of the chant are,
which we do in Figure 2.64A. Itis immediately clear that the more formulaic
differentia (t < —4) are more predictable than antiphons (¢ > 0). But we
also see that the moment we return to the antiphon, the entropy increases:
H_,._, < H_;.,. This suggests that across modes, differentia—antiphon
connections are less predictable than differentize, but more predictable
than antiphon openings.

2.6 Conclusions

This chapter presented two large corpora of Christian plainchant, the
Python library chant21 which allows them to be used in music21, and
two case studies. First, we showed that phrase contours in the Grego-
Base Corpus confirm the melodic arch hypothesis. Second, we show that
the connection between differentize and antiphon openings is less pre-
dictable than the connection between notes within differentiz, but more
predictable than within antiphons. Moreover, the relation differs across
modes. Both case studies only scratch the surface and raise further ques-
tions. We look again at differentize at the end of chapter 5, when classify-
ing the mode of chants, and discuss melodic contour in much more detail
chapter 6 and chapter 8. Those chapters broaden the perspective and look
at melodic shapes in different musical traditions. But to do so, we need
more music.
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DATAAND cODE  All data and code have been made available online:

o Cantus Corpus is available at github.com/bacor/cantuscorpus.

o CregoBase Corpus is available at github.com/bacor/gregobasecorpus.

e Chant21 can be found at github.com/bacor/chant21.

o Fordataand code related to the case studies, see github.com/bacor/DLfM2020
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Catafo

ROSS-CULTURAL computational studies often face an abun-

dance of nothing: data scarcity. Two studies by Savage et al.

(2015) and Mehr et al. (2019) are a case in point. Both rely

on global samples to study the variety of music across the

world. Although the studies differ in many respects, they
have in common that they include at most a few songs from each tradition:
Savage et al. (2015) used 304 recordings with a broad geographical spread
from the Garland Encyclopedia of World Music, while Mehr et al. (2019) used
only 118 songs covering a representative sample of societies.

Such samples may allow one to investigate musical diversity across
cultures—the main objective of both studies—but not within cultures. A
few songs can after all only accurately describe within-culture variability
when one assumes that there is none: a problematic assumption that
Savage and Brown (2013) have called the “one culture = one music” model.
Describing diversity within a tradition usually requires a large local sample
of its music. Such samples exist, but those widely available do not add up
to a global sample—Ilet alone a representative one.

Consider the Essen Folksong Collection (Schaffrath, 1995), perhaps the
go-to corpus for cross-cultural musical scores. It contains large numbers
of both German and Chinese folksongs that form an attractive contrast.
The collection has accordingly been used in many studies, from cognitive
to computational musicology, but—I suspect—usually not for principled,
but practical reasons: other collections may not have been as readily avail-
able. In contrast, comparative research from the 5os and 6os, like the
work of Mieczyslaw Kolinski (e.g., 1959, 19653, 1965b), relied on a more
varied range of musical traditions. The properties of interest were directly
tabulated from the source publications, which meant alot of manual work,
but also a thorough understanding of the sample.

In that respect, the Essen Folksong Collection is not an ideal alternative.
Where, for example, do the Chinese folksongs come from? Who collected
them, where, and when? Are they all songs, or do they include instrumental
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FIGURE 3.1— Architecture of
Catafolk. Catafolk consists
of a registry holding the
metadata of all corpora,

a Python package, used
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the registry, and a website to
make the metadata easily
accessible. Atthe coreisa
common schema, the set
of metadata fields used by
Catafolk.
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overview of cross-linguistic
datasets.
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melodies? Indeed, even the ‘German’ folksongs are rife with ambiguities,
as Andrew Brinkman explains (Brinkman, 2020, 2021). There are mis-
matches between the songs in the collection and the songs in the source
books, and it is unclear why the collection is divided into sections the
way it is. More problematically, we do not know on what basis Schaffrath
added information, such as a genre classification or phrase boundaries,
neither of which appear in the source materials.

The relatively poor documentation of Essen contrasts sharply with the
databases used in linguistic typology. Over the last decades, typologists
have gathered vast amounts of research findings in projects such as the
World Atlas of Language Structures (WALs) or the newly released Grambank.*
Both datasets describe the grammatical structure of languages using a
vast range of features. Notably, the absence or presence of every feature is
accompanied by a reference to ensure the reliability of the data. Taking
inspiration from linguists and hoping to address the issues raised above,
I started to organize my research data more systematically. The project
that grew out of that, Catafolk, is the topic of this interlude.

3.1 Catafolk

Catafolk aims to bridge the divide between sparse global samples and
dense local samples by combining already available corpora. Since not all
corpora may be freely shared, it instead focuses on providing metadata
in a consistent format. The project is primarily a proof of concept that
grew from how I organized my research data. As illustrated in Figure 3.1,
Catafolk consists of three components bound by a common schema: a
registry, a Python package, and a website.

COMPONENT1: THEREGISTRY ~ The registry is a Gitrepository containing meta-
data about all corpora and their songs. The most important part of the
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registry is the index file, which lists the metadata for each entry in the cor-
pus. The index is automatically generated by pulling data from multiple
sources. Some metadata can be extracted from the source files (e.g., kern
files), some data is constant for the corpus, and some may be included
in additional metadata files. The code used to generate an index is also
included in the registry. Every corpus is also versioned, and past metadata
versions are kept in the registry.

COMPONENT 2: A PYTHON PACKAGE  The second component of Catafolk, the
Python package, assists in generating the index files. It ensures that the
Catafolk schema (see below) is respected and maintains consistency in
the registry. The package is currently used to maintain Catafolk but could,
in the future, also be used to load metadata from the registry or organize
locally installed corpora. Going further, one could turn Catafolk into the
equivalent of a package manager: a corpus manager that would down-
load both the corpora and their metadata while taking care of versioning,
validating the integrity using checksums, and so on.

COMPONENT 3: THEWEBSITE  The third component is the Catafolk website,
which makes the registry available via a graphical interface. The website
builds a knowledge graph from the index files, which allows one to query
all corpora in Catafolk simultaneously.” But the website primarily aims
to improve the accessibility and documentation of the corpora. For that
reason, [ have also included references to source publications and, where
possible, linked individual songs to publicly available scans of the sources.

THECATAFOLKSCHEMA  Central to all these three componentsis the Catafolk
schema: the list of metadata fields used by Catafolk. Catafolk’s ontol-
ogy currently contains 61 fields, spanning musical data such as title, key,
tempo, or tune family to metadata on the collectors, encoders, or copy-
rights. More technical fields, such as file paths and mdg hashes, are also
included so that the integrity of the corpus can be verified. Entries are
geocoded as much as possible and linked to Glottolog, D-Place, eHRAF,
and possibly to scans of the source publications. The fields in the schema
are inspired by the metadata fields in the Kern Humdrum format, with
various additions based on the Natural History of Song corpus.

3.2 Corpora

Catafolk is publicly available at bacor.github.io/catafolk. The project is
in an early stage but already contains metadata for 15,507 songs from 22
datasets. The vast majority of those are symbolic transcriptions from Kern-
Scores, the Densmore collection (Shanahan & Shanahan, 2014), and the
Finnish Folk Tunes collection (Eerola & Toiviainen, 2004). In particular,
the following two collections will be used later in this dissertation.
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THE ESSEN FOLKSONG COLLECTION  As discussed in Brinkman (2020) in more
detail, the origins of the collection go back to 1982, when Helmuth Schaf-
frath started collecting folksongs in a format known as the Essen Associative
Code (EsAC). This resulted in the publication of 6,255 folksongs in 1995.
After Schaffraths death in 1994, Ewa Dahlig-Turek coordinated the EsAC
collection, to which much Polish and Chinese music has been added since.
In 1995, David Huron converted the Essen Folksong Collection to his new
**kern format, which is available via KernScores (kern.humdrum.org).

Parts of the Essen Folksong Collection have been included in Catafolk
but as separate corpora, corresponding to the source publications. For
example, Catafolk contains the following three large collections of German
folksongs (from the essen/europe/deutschl directory in Essen):

e DEUTSCHER LIEDERHORT This is a collection of 1700 German folk songs,
originally collected by Ludwig Erk and later edited by Franz Magnus
Bohme (Erk & Bohme, 18933, 1893b, 1894). This corpus corresponds to
the erk directory in Essen.

e ALTDEUTSCHES LIEDERBUCH A collection of 309 folk songs collected by
Franz Magnus Béhme (1877). This corpus corresponds to altdeul and
altdeu2 directories.

e VOLKSTHUMLICHE LIEDER DER DEUTSCHEN A collection of 704 German
folk songs published by Franz (B6hme, 1895). This corpus corresponds
to boehme directory.

THE DENSMORE COLLECTION  Frances Densmore was a very prolific collector
of Native American music. Employed by the Bureau for American Eth-
nology from 1907 onwards, she embarked on many field trips, making
thousands of recordings from all over the United States (Neubarth et al.,
2018; Shanahan & Shanahan, 2014). Many of these have been transcribed
and published in her books (Densmore, 1910, 1913, 1918, 1922, 19293, 1929b,
1932, 1939, 1943, 1957, 1958). After Paul von Hippel, David Huron, and
Craig Sapp transcribed some of these books in Humdrum, Shanahan and
Shanahan (2014) transcribed all remaining books and made these avail-
able as the Densmore Collection. Besides recording music, Densmore also
drew up extensive tables listing the frequency of various musical features
(e.g., scale, tempo, or mode). She used these to compare the music of
various peoples. I have transcribed some additional metadata from Dens-
more’s tables and added it to Catafolk.

There are ethical concerns when using recordings of this kind. As Shana-
han and Shanahan (2014) point out, Densmore “lacked formal training as
an anthropologist, and her attitude toward her subjects in the early part
of her career is often described as condescending and patronizing.” Some
music may have been intended for particular occasions, not for broader
display. Throughout this dissertation, I refer to Native American peo-
ples using the names and spelling used nowadays rather than the names
Densmore used.
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Although Catafolk has proven helpful for the present dissertation, it is
somewhat unsatisfactory that the usual suspects currently still make up
for the largest part of it. Many collections are missing, even very obvious
ones, such as the Meertens Tune Collections or the two chant corpora
introduced in chapter 2. Curating a catalog like Catafolk turns out to
be a lot of work that, in the end, requires a much larger scale. ButI am
convinced that the effort is worthwhile and hope that Catafolk will be an
inspiration to further map the musical treasures out there.

We now return to one such treasure: plainchant. The question that
motivated the study in the next chapter was inspired by folksong research.
Songs are perhaps the obvious ‘units’ of cultural transmission in music.
Indeed, one of the central notions in folksong research is that of a tune
family: a group of closely related songs that are the product of a process
of cultural change. But one may wonder whether there are smaller units,
perhaps analogous to how phrases, words, and morphemes in language
are every smaller replicators? What are, in other words, the smallest units,
larger than notes, in a musical tradition?

DATA AND CODE  Most of the code is publicly available:

e The Catafolk website can be found at bacor.github.io/catafolk.

o The source code of the Catafolk website is available on github.com/bacor/catafolk
e The registry can be found at github.com/bacor/catafolk-registry

o The Python package has not been released yet.

REFERENCE Catafolk was presented at SysMus21: Cornelissen, B., Zuidema, W., & Burgoyne,
J. A. (2021b). Catafolk: Cataloguing folk music datasets for comparative musicology. InJ.
Stupacher & S. Hagner (Eds.), Proceedings of the 14th International Conference of Students of
Systematic Musicology (SysMus21). DO110/jx9r.
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Modes

Many musics across the world are structured around multi-
ple modes, which hold a middle ground between scales and
melodies. We compare three approaches to classifying mode
in a corpus of 20,865 medieval plainchant melodies from the
Cantus database. The traditional ‘textbook’ approach and the
only prior computational approach work well, but largely re-
duce modes to scales and ignore their melodic character. We
propose a model using tf—idf vectors that reaches 93—95% F,
score on mode classification, compared to 86—90% using tra-
ditional pitch-based methods. Importantly, it reaches 81-83%
even when we discard all absolute pitch information and re-
duce a melody to its contour. Our model strongly depends
on the choice of units: i.e., how the melody is segmented in
motifs. If we borrow the syllable or word structure from the
lyrics, the model outperforms all of our baselines. To better
understand how the classifier works, we propose an attribu-
tion method, witness coloring, that highlights the motifs that
strongly contribute to the resulting classification. Taken to-
gether, our results suggest that, like language, plainchant is
made up of ‘natural’ units, in our case, between the level of
notes and complete phrases.

Introduction 33 ¢ Methods 34 e Results 38 o Attribution
40 e Discussion and Conclusion 42



FIGURE 4.1—Overview of
this study. We compare
three approaches to mode
classificationin a corpus of
Gregorian chant. Cantus con-
tributors have transcribed
avast number of melodies
from medieval manuscripts
(A). We classify mode based
on the final, range, and ini-
tial in the classical approach
(B), and based on pitch (class)
and repetition profiles in the
profile approach (c). Finally, in
the distributional approach (D),
we use tf—idf vectors where
we tweak two parameters:
the segmentation, or which
melodic units we use (E),
and the representation (F),
where we gradually discard
information about the scale
when we move from pitches
to contours. In this way, we
aim to capture the melodic,
rather than scalar, aspect of

mode.
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4.1 Introduction

In his seminal Grove entry, Harold Powers et al. (2001) points out a remark-
able cross-cultural generalization: many musics are structured around
multiple modes. Modes are often associated with the major—-minor dis-
tinction in Western music. Still, there are much richer systems of modes:
examples include Indian raga, Arabic makam, Persian dastgah, pathet in
Javanese gamelan music, and the modes of Gregorian chant. The specifics
obviously vary, but all these phenomena share properties with both scales
and melodies and are perhaps best thought of as occupying the contin-
uum in between (Powers et al., 2001). On the one hand, a mode is more
than a scale: it might imply a hierarchy of pitch relations or favor the
use of characteristic motifs. On the other hand, it is not as specific as a
particular tune: a mode instead describes a melody type. Modes are of
central importance to their musical tradition, both as means to classify
the repertoire and as practical guides for composition and improvisation.
Characterizing modes computationally is, therefore, an important prob-
lem for computational ethnomusicology.

Several studies have investigated automatic mode classification in In-
dian raga (Chordia & Rae, 2007; Gulati et al., 2016), Turkish makam (Atalay
& Yore, 2020; Unal et al., 2012) and Persian dastgah (Abdoli, 2011; Heydarian
& Bainbridge, 2019). These studies can roughly be divided into two groups.
First, studies emphasizing the scalar aspect of mode usually look at pitch
distributions (Atalay & Yore, 2020; Chordia & Rae, 2007; Heydarian & Bain-
bridge, 2019), similar to key detection in Western music. Second, studies
emphasizing the melodic aspect often use sequential models or melodic
motifs (Gulati et al., 2016; Unal et al., 2012). For example, Unal et al. (2012)
train n-gram models for 13 Turkish makams and then classify melodies by
their perplexity under these models. Going beyond n-grams, Gulati et al.
(2016) use motifs, characteristic phrases, extracted from raga recordings
to represent every recording as a vector of motif-frequencies. They weigh
counts, amongst others, by the inverse document frequency, which balances
highly frequent motifs and favors specific ones.

This chapter focuses on automatic mode classification in Western me-
dieval plainchant. This has rarely been studied computationally, even
though the term (if not the phenomenon) ‘mode’ originates there. At
first glance, mode in plainchant is relatively clear, though certainly not
entirely unambiguous. With a second glance, it has a musicological and
historical depth that inspired a vast body of scholarship going back over
one thousand years. The music is indeed sufficiently distant in time from
most other musics, including Western classical and pop music, to provide
an interesting cross-cultural comparison. And for once, data is abundant,
thanks to the immense efforts of chant scholars.

Computational studies of chant have mostly been concerned with op-
tical music recognition of medieval manuscripts: the siMssa project, for
example, has used such systems to transcribe plainchant from the Cantus
database (Helsen et al., 2014). Recent ismir conferences have also included
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analyses of Byzantine plainchant (Panteli & Purwins, 2013) and Jewish
Torah tropes (van Kranenburg et al., 2011), and a comparison of five Chris-
tian chant traditions using interval n-grams (van Kranenburg & Maessen,
2017). Bug, to the best of our knowledge, the study by Huron and Veltman
(2006) is the only computational study addressing mode classification in
chant. The study used pitch class profiles and thus approached mode as
amostly scalar phenomenon. Wiering (2006) later criticized the study,
partly for ignoring the melodic character of modes.

We aim to revisit this work on a larger dataset and model the melodic
aspect of mode. Concretely, we compare three approaches to mode classi-
fication:

1. CLASSICAL APPROACH: based on a chant’s range, final, and initial note.

2. PROFILE APPROACH: uses pitch, pitch class, and repetition profiles,
inspired by Huron and Veltman (2006).

3. DISTRIBUTIONAL APPROACH: uses tf—idf vectors based on various seg-
mentations and representations of the melody.

Besides evaluating mode classification, we ask how the task is solved.
Using alinear classifier for the distributional approach allows us to explain
the model behavior in more detail. In particular, we propose an attribution
method to visualize which motifs contribute to the classification of a
chant.

4.2 Methods

The design of this study is visualized in Figure 4.1.

DATA: THE CANTUS DATABASE We use chant transcriptions from Cantus
Corpus (vo.2), a dump of the Cantus database tailored for computational
research containing 497,071 chants (see chapter 2). We here only consider
chants that have a Volpiano transcription (63,628 chants) and further filter
out chants with incomplete or non-standard transcriptions, without a
complete melody, without ‘simple’ mode annotation, and exact duplicates
(see supplement a2). This resulted in 7031 responsories (966,871 notes,
avg. length 138 notes) and 13,865 antiphons (825,143 notes, avg. length
60 notes). We fixed a 70/30 train/test split for all datasets and only used
training data in exploratory analyses. Cantus often contains multiple
variants of any particular melody, transcribed from different manuscripts
(see supplement A10). One may wonder whether the simple train/test split
is sufficient, or whether even more care is needed to avoid overlap between
such melodic variants in the train and test sets. This is a difficultissue that
also applies to other musical corpora (e.g., the Essen folk-song corpus),
and for which there is no perfect solution. To assess the effects, we have
also repeated our experiments on a subset without variants, which we
discuss in supplement A12.
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According to the transcription guidelines, flat symbols are transcribed
only once, directly before the first flattened note. We replace the first and
later flattened notes by the corresponding accidental, a Volpiano character
that sits at a specific staff line. In this way, flat notes are also encoded by
a single Volpiano character. We discard characters like clefs and pausas
and only retain the notes, accidentals, and boundaries (hyphens). The
resulting string is used in our three classification experiments, which we
now discuss.

CLASSICAL APPROACH: FINAL, RANGE, INITIAL  The first approach is motivated
by the classical procedure for mode classification. We extract three fea-
tures from every chant: the final pitch, the range (lowest and highest
pitches), and the initial pitch. Theory suggests that the final alone should
give an accuracy of roughly 50%, and adding the range should further
increase that by roughly 50% if there is no ambiguity. Figure 4.2 shows the
feature distributions for all modes. It suggests that there is some ambi-
guity, and so numbers will be a little lower. For this task, we use random
forest classifiers (Breiman, 2001), which aggregate multiple decision trees.
Training details of all models are discussed below.

PROFILE APPROACH: PITCH (CLASS) PROFILES  The second approach is inspired
by Huron and Veltman (2006). Using 97 chants from the Liber Usualis,
they compute average pitch class profiles (the relative frequency of each
pitch class) for each mode and then classify chants to the closest profile.
We take a similar approach and use k-nearest neighbor classification,
where k is tuned (see paragraph 1). In a commentary, Wiering (2006)
argued for using actual pitches rather than pitch classes, as the pitches an
octave above the final have a very different role than those an octave below
it. We follow that suggestion by also computing pitch profiles (Figure 4.3).
Finally, we propose a repetition profile aiming to describe which notes
function like a recitation tone. For every Volpiano pitch ¢ we compute a
repetition score r(gq), which is the relative frequency of direct repetitions,
and collect these to get a repetition profile. Formally, if a chant has pitches
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FIGURE 4.2 — Classical fea-
tures. The classical approach
uses the final, range, and ini-
tial to determine the mode.
The overall distribution for
each mode (1-8) is clearly dif-
ferent, although not entirely
without ambiguity.



FIGURE 4.3 — Pitch profiles.
These show the relative
frequency of every pitch

in the eight modes. Again,
although the distribution of
individual modes is clearly
distinct, some residual
ambiguity remains.

)

11n other chapters, ‘contour
denotes any description

of the general shape of a
melody (see chapter 6 and
chapter 8). In this chapter,
it however denotes one
particular representation,
also known as Parsons’ code
(Parsons, 1975).
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Pps - > Py, thenr(q) = #{i 1 p; = qand p;;; = q}/(N — 1) since there are
N — 1 possible repetitions.

DISTRIBUTIONAL APPROACH: TF-IDF VECTORS ~ Our third approach aims to cap-
ture the melodic aspect of mode. In short, we use a bag of ‘words’ model (cf.
Gulati et al., 2016) and tweak two parameters: the segmentation (which
melodic units to use as ‘words’) and the representation (pitches, intervals,
and contours). The idea is to discard more and more information about
the scale and see if we can nevertheless determine the mode.

First, the units. For chant, three natural segmentations suggest them-
selves: one can segment the melody (1) at neume boundaries, but also
wherever we find (2) a syllable or (3) a word boundary in the lyrics. Given
the close relationship between text and music in chant, there is some
reason to believe that these are meaningful units. Conveniently, all of
these boundaries are explicitly encoded in Volpiano by a single, double,
and triple dash, respectively. Note that these natural units are nested:
neumes never cross syllable boundaries. We compare the natural units
to two types of baselines. The first is an n-gram baseline where we slice
the melody after every n notes, forn =1, ...,16. The second is a random,
variable-length baseline. Here the melody is segmented randomly, but in
such a way that the segment length is approximately Poisson distributed
with a mean length of 3, 5, or 7. We stress that all these units are proper
segmentations: units do not overlap. In particular, we choose not to use a
higher-order model (using n-grams of units) because we are only inter-
ested in comparing different segmentations.

Second, the representation. We represent melodies in three ways: as a
sequence of pitches, intervals (the number of semitones between succes-
sive notes), and contours (the direction of movement between successive
notes: up, down, or level).! There is one complication when segmenting
sequences of intervals or contours: we introduce dependencies between
the units. All units would, for example, start with the interval from the
previous unit. We call this a dependent segmentation. Alternatively, you
could discard the intervals between units to obtain an independent version.
This effectively makes every unit one interval shorter. We analyze both the
independent and dependent versions. Since we use a text-based represen-
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tation, we found it convenient to start all independent units (including the
first) with a dot to keep the segmentation identical across representations.
You can think of the dot as marking the omitted interval to the previous
unit.

Third, the model. Given a segmentation, we represent every chant by
a vector of unit frequencies, but weighted to favor frequent, yet specific
units: units that do not occur in too many chants. A standard way of
doing this in textual information retrieval is using term-frequency inverse-
document-frequency (tf—idf) scores, which multiply the frequency of a term
in a document (tf) by the inverse document frequency (idf). The latter is

computed as

1+n
— )+,
1+ df(t))

where 7 is the total number of documents and df() is the document fre-
quency: the number of documents containing term ¢. Intuitively, this factor
decreases the scores of common terms that occur in many documents. We
use at most 5ooo features and found it was important ot to set a mini-
mum or maximum document frequency. Finally, we determine the mode
of a chant by feeding its tf—idf vector to a linear support vector machine.
We discuss the classifier in more detail in section 4.4.

idf(¢) = log( (4.1)

In sum, we analyze 22 segmentations (3 natural ones, 16 n-grams, 3
random) and g representations (pitch and dependent/independent in-
terval/contour), giving a total of 110 conditions. Figure 4.4 shows a low-
dimensional projection of the tf—idf chant vectors, colored by mode, in
some of these conditions.

TRAINING We tune every model using a randomized hyperparameter
search with 5-fold stratified cross-validation. That is to say that we ran-
domly sample hyperparameters from a suitable grid (determined by ex-
tensive manual analyses) and determine their performance using 5-fold
cross-validation on the training set, where we ensure the class frequencies
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FIGURE 4.4 — PCA of tf—idf fea-
tures. Principal component
projection of the chant vec-
tors, after projecting them
on the eight decision axes of
the corresponding svm classi-
fier. This helps separate the
modes in the visualization
since each decision axis is
optimized to separate one
mode from the rest (see also
section 4.4). The top row
plots principal components 1
against 2; the bottom row 4
againsts. Even in the contour
representation, the modes
are fairly clearly separated.
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neume 92 86
syllable 93 89
word 90 87
1-gram 87
2-gram 91
3-gram 92
4-gram 91
5-gram 91
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Profile Respons. Antiphon
pitch class profile 85 88
pitch profile 88 90
repetition profile - 84
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0% Weighted F1-score 100%

2 The retrieval scores for all
classes (modes) are averaged,
weighted by the number of
instances in each class.
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FIGURE 4.5 — Classification results. Weighted F,-score for three approaches to mode
classification, using two chant genres: responsories and antiphons. Scores are averages
of five independent runs of the experiment. The classical approach (A) using the final,
range, and initial reaches F,-scores of 90% and 86%. The profile approach () works
better for antiphons (90% vs. 86%) and somewhat worse for responsories (88% vs. 90%).
As Wiering (2006) suspected, pitch profiles outperform pitch class profiles by a small
margin. The distributional approach (c) reaches the highest F, scores of 95% on both
responsories and antiphons. The choice of segmentation (vertically) is crucial: classification
is improved by using ‘natural’ units, word-based units in particular, rather than n-grams.
As the representation (horizontally) becomes cruder, from pitches to intervals and finally
to contours, the task becomes much harder. But, when using word-based segmentation,
performance remains high.

are similar in all folds. We use the hyperparameters yielding the highest
cross-validation test accuracy to train the final model. All models were
implemented in Python using scikit-learn (Pedregosa et al., 2011).

4.3 Results

Figure 4.5 gives support-weighted? averages of F,-scores obtained on the
full test sets for all three approaches. The scores are averages of five in-
dependent experiment runs using different train/test splits. Standard
deviations were small and are included in supplement a11. We now com-
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pare the three approaches and then discuss the effect of representation
and segmentation on the distributional approach.

APPROACHES: DISTRIBUTIONAL APPROACH WORKS BEST  First of all, we report
the highest classification scores with our distributional approach using
pitch representations: an F;-score of 93% for responsories and 95% for
antiphons. This corresponds to an error reduction of 30-60% compared
to the classical approach (90% and 86%). The classical approach confirms
the rule of thumb: the range and final are very informative features. Us-
ing only these, we obtain F,-scores of 89% and 79%, which are further
increased by also adding the initial. The profile approach outperforms the
classical approach for antiphons (9o% vs. 86%) but is outperformed for
responsories (88% vs. 9o%). Our results support Wiering’s (2006) intu-
ition that pitch profiles more accurately describe mode than pitch class
profiles, but the effect is small: it increases F, scores by 2—3%. Repetition
profiles appear to be less useful for both genres.

Our results in broad strokes validate the classical and profile approach,
which both peak around a 9o% F,-score, using simple features. The dis-
tributional approach improves this, up to 95% using complex features.
Importantly, we now show that the distributional approach maintains
high performance when using interval or contour representations.

REPRESENTATIONS: CONTOURS ARE SUFFICIENT ~ We find that the classification
task gets harder when the representation gets cruder, from those based
on pitch, to intervals and finally to contours (Figure 4.5c, horizontally).
This was anticipated: cruder representations are obtained by discarding
information from every unit. Shorter units are impacted more by this in-
formation loss. For example, the performance with 1-grams drops by over
75% when moving from pitch to independent contour representation. At
that point it performs at majority baseline (a 7% F;-score for responsories
and 12% for antiphons).3 For longer units such as 10-grams, the drop is
not as dramatic (around 10%). However, this comes at the cost of a com-
paratively low performance using the pitch representation, presumably
because of increasing sparsity.

Natural units, however, escape this trade-off. Word-based segmen-
tations perform consistently well, dropping only 3% below the classical
baseline using the highly impoverished independent contour representa-
tion. In contrast to the other representations, the contours do not carry
any information about the scale: the same contour can be reproduced
in any scale. Apparently, we can discard the scalar aspect of mode and
still classify it: contours alone contain sufficient information for mode
classification. The success of pitch-based methods might obscure that
mode is as much a melodic phenomenon as a scalar one.

Interestingly, the earliest chant notation used unpitched neumes that
mainly described the contour of the melody—not the exact pitches. Our
results reinforce the idea that contour is highly informative—so informa-
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3 Every unit is identical for
1-grams in the independent
interval and contour represen-
tation: a dot representing
the omitted contour to the
previous note. The majority
class for both responsories
and antiphons is mode 8,
taking up 21% and 28% of
the test data respectively
(see supplement A4). Thisis
precisely the accuracy of the
model in those conditions.



tive that given a mode, text, and contour, an experienced singer could
reconstruct the chant melody.

SEGMENTATIONS: NATURAL UNITS WORK BEST.  Our most important result is
that natural units (neume, syllables, and words) yield the highest classi-
fication performance among all the representations we considered. The
4- and 6-gram baselines also reach top F;-scores in antiphons, but only
when we use representations that include information about pitch. Fur-
thermore, the success of natural units cannot be explained solely by their
length. In responsories, neumes, syllables, and words are on average 2.3,
3.0, and 7.1 notes long, respectively (see supplement a6). Yet, the per-
formance of these natural units is consistently higher than n-grams of
comparable length. The performance of the natural units is also consis-
tently higher than that of the variable-length Poisson baselines, which are
intended to mimic the overall distribution of natural lengths but ignore
musical and textual semantics.

A few other observations merit discussion. Firstly, although neume and
syllable segmentations behave differently for responsories, they behave
similarly to each other for antiphons. The reason may be that neumes and
syllables more often coincide in antiphons. Antiphons are less melismatic
than responsories (i.e., they use fewer notes per syllable, 1.5 to be precise).
Secondly, both the n-grams and the Poisson baseline perform better on
antiphons than on responsories, possibly because the n-grams are more
likely to end up being coincidentally aligned with the natural units the
less melismatic the genre.

CONTROLLING FOR MELODIC VARIANTS ~ We repeated all experiments on a sub-
set of the data from which we removed melody variants (see supplement
A12 for details). In terms of the number of notes, this meant a 75% and 66%
reduction in data size for responsories and antiphons respectively. The
performance of all models decreased on this subset, and for responsories
more than for antiphons. Our main findings that contours are sufficient
and that natural units work best across representations stand. We do
observe some reorderings: some already high-performing n-grams in an-
tiphons, for example, slightly overtake word segmentations, although
only for pitch and dependent interval representations. The distributional
approach works best for antiphons regardless of including or excluding
chant variants. Still, for responsories, the distributional approach drops
slightly below the classical approach on the subset (where the profile ap-
proach is worst). These findings might be explained by increased sparsity
in the smaller dataset: natural units in responsories are, after all, longer.

4.4 Attribution

The distributional approach to mode may classification work well, but
how so? This section aims to explain and visualize in detail why a chant
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is classified to a particular mode. More precisely, we highlight which
motifs contribute to a particular classification and, in that way, attribute a
classification to specific motifs.

Recall that we represent chants as high-dimensional tf-idf vectors. We
then used a linear support vector machine to determine eight decision
boundaries: hyperplanes in that high-dimensional space. Each bound-
ary separates chants of a particular mode from chants of the seven other
modes in a so-called one-vs-rest classification scheme. A linear decision
boundary is represented by a decision vector orthogonal to it, that essen-
tially points out where that boundary lies. But this vector also defines a
decision axis along which one mode is discriminated from the rest. Fig-
ure 4.6 illustrates the decision axes: it shows the distribution of chants
after projecting them on each of the eight decision axes. Chants whose
mode corresponds to the decision axis tend to get positive projections,
while the other chants get small negative values.

Computing the projection of a chant on a decision axis amounts to sum-
ming the chants’ tf-idf scores, weighted by the coefficients of the decision
vector. Since tf—idf scores are positive, if the k-th coefficient or weight has a
large positive value, then the corresponding motif can strongly contribute
to a large projection. The k-th motif may, in other words, be important
for classifying the chant to the axis’ mode. Consequently, we use the coef-
ficients of the decision axes as a measure of class-wise feature importance.
Itis a ‘class-wise’ measure in the sense that it measures the importance
for classifying to one particular class—or mode, in this case. We discuss a
‘general’ variant in supplement a13,%. where we also discuss using tf—idf
scores as a measure of feature importance.
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FIGURE 4.6 — Decision axes.
The eight axes describe

the decision planes of the
classifier. Each axis discrim-
inates one mode from the
rest. The modes are better
discriminated in the pitch
representation (A) than the
contour representation (B),
consistent with our classifica-
tion results.

4 Counter-evidence, in the
form of strongly negative
weights, does not contribute
to the class-wise impor-
tance measure discussed
here. Inthe general version,
both strong evidence and
counter-evidence indicate
importance.



FIGURE 4.7 — Attribution
using witness coloring. Our
attribution method visually
indicates to which motifs
the classification can be
attributed. It treats every
motif as a witness for the one
mode from which it gets the
highest class-wise feature
importance. We color motifs
according to the mode they
witness: mode pairs share a
color, but plagal modes have
adashed line above them.
The opacity indicates the
feature’s importance: darker

features are more important.
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To visualize the importance of a motif, we look up its importance scores
fis - fg for all eight modes. If the motif corresponds to index k, these
scores are the k-th entries of the eight decision vectors. One of the scores,
say f,,, will often be markedly larger than the others so that the occurrence
of that motif can be seen as evidence for mode m. Differently put, the
motif witnesses mode m. This motivates our visualization method, witness
coloring, that colors the motifs according to the mode they witness. The
importance scores are visualized by varying the opacity. As distinguishing
transparencies is difficult (Cleveland & McGill, 1984), we scale the opacity
cubically between 10% and 100%, to make the most important motifs
stand out.

We have implemented the attribution method using Chant2i. Figure 4.7
shows the result for the mode 7 responsory Ecce ego mitto vos (D-KNd 1161,
folio 108r), using a syllable segmentation and a pitch representation. The
visualization highlights syllable motifs that contribute to a (correct) mode
7 classification, such as o- on the first line, po-, rum-, di- and -cit on the
second line. The last motif also occurs in the final line. In supplement A14,
we further illustrate our visualization method using antiphons. Antiphons
are sung before and after a psalm and end with so-called differentie that
set the final words of the psalm (seculorem amen) and connect it back to
the antiphon. As discussed in section 2.5, differentiz are fairly indicative
of mode, and accordingly, they are highlighted by our attribution method
in interval and contour representations.

4.5 Discussion and Conclusion

In this paper, we analyzed three approaches to mode classification in a
large corpus of plainchant: (1) the classical approach using the final, range,
and initial; (2) the profile approach using pitch (class) profiles and (3) the
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distributional approach using a tf—idf vector model and various segmen-
tations and representations. We found that the distributional approach
performs best and that it can maintain high performance on contour rep-
resentations if using the right segmentation: at word boundaries, in this
case. Analyzing the distributional approach in more detail, we proposed
an attribution method that visualizes which motifs are important for the
classification.

Although our results are specific to one corpus of medieval music and
one classification task, we believe our conclusions are of wider relevance.
We often fall back on n-grams because they are well-understood and easy
to use. Amore natural segmentation may be harder to obtain, butif finding
them can have such a large effect on a relatively simple task like mode
classification, their advantages may be even stronger for more complex
tasks.

A first next step could be to explore whether lyrics yield equally useful
units in other vocal musics. As noted, plainchant’s link between text and
music is particularly tight. This at least suggests that the text may be
useful in other types of chant, like Byzantine chant or Torah trope. For
folk melodies designed to standard poetic meters, it is not as obvious
whether lyrics would help or hinder the identification of useful units. This
is worth investigating, as characteristic motifs and repeated patterns are
commonly used in computational folk-song studies, particularly for tune
family identification (Janssen et al., 2017; Volk & van Kranenburg, 2012).

Our results raise another question: is chant indeed composed by string-
ing together certain melodic units, much like a sentence is composed
of words? It has been suggested (and disputed) that Gregorian chantis
composed in a process of centonization and that a chant is a patchwork
of existing melodic chunks called centos. A recent study used the tf—idf
weighting to discover centos in Arab-Andalusian music (Nuttall et al.,
2019). This raises the possibility that classification using natural units
may have been successful because they indeed are the building blocks,
the centos.

Computational studies of plainchant are still quite rare, and we hope
this study shows that chant is an interesting repertoire that can yield
insights of broader relevance. The immense efforts of chant scholars mean
that data are abundant. In short, we think chant can aid the development
of models that apply beyond Western classical and pop music and embrace
the true diversity of musics around the world.
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CHAPTER

Interlude






Neural chant

HANT SCHOLARSHIP is an intimidating field of study for an

outsider. The literature breathes an intimate familiarity

with practices, repertoires, and manuscripts I do not have.

Therefore, my approach to chant has not been a humanistic

close reading but a computational distant reading. But our
reading in the previous chapter relied on a questionable assumption: we
treated chants as unordered bags of motifs and ignored their temporal
order. In this interlude, I would like to revisit the same chant—Cantus
Corpus vo.2—but using a model that does respect temporal order. For
this, we will use a long short-term memory (LsT™m) network (Hochreiter &
Schmidhuber, 1997), rather than, say, a state-of-the-art transformer. One
might motivate this choice in various ways—inspired by previous work, a
study in interpretability, or just a proof of concept—but I hope this short
interlude will motivate itself.

5.1 Recurring connections

Neural networks are quite literally graphs of computations. Every node
in this graph has a certain activation, computed as a weighted sum of its
inputs, which is then transformed in a nonlinear way. Recurrent neural
networks are designed to model sequential data and to that end, contain
nodes with a connection to themselves. Besides ordinary inputs, these
nodes also receive their own output from the previous time step as an
input. An LSTM is a recurrent network, but its recurrent units are not plain
nodes. Each unit contains a so-called cell state that can retain information
over a long time span and influences the unit’s output. The cell state is
updated based on the input via multiple gates, whose parameters are
learned when training the network.

How does training work? We present the network with a Volpiano
character, represented by a numerical index, and ‘ask’ it to predict the



A. Concatenated chants
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FIGURE 5.1—The neural chant
model. The model consists
of two recurrent layers with
LSTM units (€) and is trained
to predict the next character
given an input character.

To do this efficiently, all
chants are concatenated (A)
and divided up in parallel
batches (B) of a fixed length.

1 We shuffle the order of
the chants—but not their
characters, of course—at the
beginning of each epoch.
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next character. For that reason, the network’s final layer has as many
nodes as there are characters. Those nodes can output how probable itis,
according to the model, that a character is the next one. When training,
we know what the next character should be. That allows us to measure the
error in the predictions of the model. The crucial trick is to differentiate
the error signal and determine in what direction to change the model’s
parameters so as to make the correct prediction more likely. We then
update the parameters of the network by taking a small step (given by the
learning rate) in that direction.

But how are the predictions computed precisely? We start with a char-
acter (see Figure 5.1¢). The first step is to embed (the index of) a character
into a high dimensional space; this is also known as the encoding step.
While the indices are meaningless, the embedding hopefully organizes
them in a useful or even meaningful way. Next, the embedded character
is passed to the recurrent layer, together with the previous state of the
hidden layer. This is where the network integrates the current input with
whatit has seen before. We feed the output through a second recurrent
layer before decoding those outputs to a distribution over the vocabulary
that indicates the most probable next character.

Instead of presenting the network one character at a time, it is more
efficient to present it with small batches of inputs (see Figure 5.1a and B).
First, we concatenate all chants, separated by <eos> tokens that mark the
end of a song.' Then we split this sequence into B parts (the batch size)
of equal length and form a batch by taking S characters (the sequence
length) from each of the B parts. You can think of this as sliding over the
corpus in B parallel parts. We also truncate the flow of errors back in time
to S steps. This is known as truncated backpropagation through time and
means that there is no explicit error signal for more than S time steps.

Although we train the network to predict the next character, that is not
the task we are after. To predict the next character, it turns out that the
model needs to build up meaningful representations of the input data
(a form of representation learning). Suppose we train it on next-word
prediction. In that case, the embedding space might, for example, become
a model of word meanings, and the network’s internal representations
may start to show sensitivity to grammatical categories, which may be
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Model Parsing Mode classif. Genre

. If.
Name Emb. Hid. Params ' °" F, SOTA ¢
VOLPIANO-SMALL 8 64 56k 11,4% 63% 85%
93-95%
VOLPIANO-LARGE 32 256 838k 1,7%  84% 86%
INTERVAL-SMALL 8 64 55k — 49% 66%
89-92%
INTERVAL-LARGE 32 256 833k —  56% 1%
CONTOUR-SMALL 8 64 53k —  37% 77%
81-85%
CONTOUR-LARGE 32 256 825k — 42% 77%

detected in the outputs of the recurrent units. Something like this is what
we are really after: rich chant representations. Afterward, we can also use
the network for something else. Suppose we present the network with
a character to start with, like a clef, and then sample the next character
from the model’s predictions. Append the result to the clef, repeat, and
the model is composing a new chant.

TECHNICALSUMMARY Let me summarize all that in more technical terms.
The model architecture and its implementation are inspired by Gulordava
et al. (2018). We train a 2-layer LsTM on next character prediction using a
cross-entropy loss. We split the training data into mini-batches consisting
of 32 sequences of 64 characters. The learning rate is dynamically adjusted
using Adam with default parameters. For each of the three representa-
tions, we first broadly tuned the embedding size, hidden size, sequence
length, learning rate, batch size, initialization range, dropout, and gradi-
ent clip with HyperOpt using ASHA scheduling and then more finely tuned
the learning rate and sequence length using a population-based training.
We then fixed the batch size to 32, the initialization range to (—0.15, 0.15),
the dropout to o.15, and the clipped gradients to o.5. All models are im-
plemented in PyTorch (Paszke et al., 2019), and tuning is done using Ray
Tune (Liaw et al., 2018). We train two classes of models, sSMALL ones with
an embedding size of 8 and a hidden size of 64, and ‘LARGE’ ones with an
embedding size of 32 and a hidden size of 256. All models were trained
to predict the next character, but using three different chant representa-
tions from chapter 4: plain VOLPIANO, INTERVALS and CONTOUR (see also
Figure 5.2).” Let’s see how those models learn to chant.

5.2 Learning to chant

STEP 1: VOLPIANO SYNTAX  To test whether the voLP1aNO models were train-
ing properly, I generated short samples after every few hundred batches,
starting from an end-of-song token. In the training data, that token is
always followed by the clef of the next chant and some space: something
like “<eos>1---.” Initially, the predictions are nonsensical, but gradually
the model learns to start chants with clefs (see Figure 5.3). A more typical
hyphenation pattern also starts to appear: groups of, say, four hyphens no
longer occur. It appears, in other words, that the character model learns
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FIGURE 5.2 — Overview of
models and results. We
trained a large and small
model on next-character
prediction using three rep-
resentations: raw Volpiano,
intervals, and contours.

The large voLpiANO model
clearly learns the Volpiano
syntax: only 1,7% of the sam-
ples from the model are not
parseable. We also trained a
linear svm on a chant’s final
hidden representation to
predict its mode or genre.
This performs better on pre-
dicting genre (final column)
than mode (columns before
that).

2 | used the dependent
interval and contour repre-
sentation; see chapter 4.
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FIGURE 5.3 — The model learns to start chants with a clef. Shown are three samples (hori-
zontally) generated by a small model after several training epochs (vertically). The model
generated 30 characters, starting from the end-of-song token <eos>. After a few epochs, it
has learned to start chants with clefs and use typical hyphenation. Samples are from a very
small model (embedding size 2, hidden size 32), but | saw this behavior consistently.

the Volpiano syntax. In fact, I can measure quite precisely how well it does
s0, using my Volpiano parser from Chant21 (see chapter 2). Of the 1000
samples generated by the large Volpiano model, only 1,7% could not be
parsed. This closely approaches the < 1% transcriptions in Cantus that
could not be parsed. The small Volpiano model fares not so well, with over
11% of its samples failing to parse.

STEP 2: PITCH FOR BEGINNERS How does the network represent Volpiano
characters? In Figure 5.4, I visualize the character embeddings in two
dimensions using umapr (Mclnnes et al., 2018). Characters of the same type,
such as notes, liquescents (smaller ornamental notes), or bars, tend to
cluster. But it appears the embeddings are also ordered according to their
pitch: going through the liquescents (orange) in the small model from
left to right, we encounter A-B-c-D-F-E-G-K-J-H. Pitches (blue) from top to
bottom also appear to have some order. Indeed, we can find embedding
dimensions for both models that correlate with the pitch of note characters
(see the bottom row of Figure 5.4). The correlation is much stronger for
the smaller model, which aligns with my informal impression that small
embeddings tend to be more clearly organized. Both models, to some
degree, appear to order notes and liquescents by their pitch, and they
learn this solely from how characters are distributed in chants.
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A. Small Volpiano model B. Large Volpiano model
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FIGURE 5.4 — Character embeddings of notes correlate with their pitch. The top row shows a
UMAP projection of the character embeddings for (A) vVOLPIANO-SMALL and (B) VOLPIANO-
LARGE. The points are colored according to their category, and sizes reflect the log frequency
of the character. For both models, the bottom row plots the MIDI pitch of note characters
against the embedding dimension that best correlates with pitch. This suggests that both
models, and the smaller one in particular, learn to represent the pitch of characters.

STEP 3: PITCH FROM INTERVALS It may be unsurprising that pitch is helpful
when dealing with melodies, but how about pitch intervals? The INTERVAL-
LARGE model is trained to predict sequences of characters like “-3211222”
that (we know) encode interval sizes. Does the model also learn this?
To find out, I pass an unseen chant through the model and record the
hidden state of layer two after every character. This turns a chantinto a
sequence of 256-dimensional vectors. We now ask two questions. First,
can we predict the current interval from these vectors (e.g., the current step
moves two semitones up)? And second, can we predict the current pitch
relative to the starting pitch (e.g., we are now five semitones above the
starting pitch)? To answer the second question, the model must represent
interval sizes and compute their cumulative sum.

And indeed, it seems as if the model is doing something like that (Fig-
ure 5.5). I trained a linear regressor to predict the interval or the pitch
from the hidden representations. This is known as probing or diagnostic
‘classification’ (Veldhoen et al., 2016): a way to assess whether a network
represents certain information. In this case, intervals can be well predicted
(R?* = 0.78), but even pitches are fairly predictable (R* = 0.55). Figure 5.5
shows two examples of predictions compared to the targets. The contour
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FIGURE 5.5 — An interval model learns to track pitch throughout a melody. The INTERVAL-
LARGE model is trained on sequences of characters (a) that represent the interval size to the
following note (B). By summing up all successive intervals, the actual pitches (relative to

the starting pitch) can be obtained (c). It appears that the model learns to represent this

information: using linear regression on the hidden representations after every step, we can
reasonably well predict the interval (blue) and even the pitch (orange) (D—E).

of the predicted pitches roughly follows the actual contour, even after 5o
steps or more. Example 2 illustrates what can go wrong: the predicted
pitch contour lies above the target.

STEP 4: MODES AND GENRES ~ Next, we turn to more high-level structures:
does the model learn to represent complete chants in a useful way? To
find out, I passed unseen test chants through the voLPIANO-LARGE model
and recorded the hidden state of the second layer after seeing the entire
chant. This produces a 256-dimensional chant vector. I then trained linear
support vector machines on these vectors to predict the mode and the
genre. The latter reaches F, scores of 71% and 77% for the interval and
contour representations, and even 85% for the Volpiano representation
(Figure 5.2).3 But only the latter representation includes hyphenation,
which is quite different in syllabic versus melismatic genres. On mode
classification, larger models outperform smaller ones, but both perform
worse than the tf—idf model in the previous chapter. Then again, we use
only the very last representation, the resulting vectors are smaller than
the tf—idf vectors, and the LsTM™ is not explicitly trained to predict mode.
And so, this is probably not the performance ceiling.

I also visualized the chant vectors using pca and umar and then colored
them according to their mode or genre (Figure 5.6). The first principal
component (horizontal) roughly separates chants according to their genre:
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A. Colored by mode B. Colored by genre C. Colored by genre and mode
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FIGURE 5.6 — Chants are represented along roughly two dimensions: mode and genre. As
chant vectors, we use the hidden state of the second layer of the large Volpiano model after
processing a complete chant. The top row shows a PCA projection, and the bottom row is a
UMAP projection, colored differently in each column. (A) The model appears to represent
modality, as chants in a cluster appear to have the same mode. Modes appear to correlate
with the second principal component, where the first correlates with the genre, as seen in
(B): the genres responsory (verse) and antiphon are clearly distinguished along this axis.

Overall, clusters appear to be primarily specified by their genre and mode, as shown in (c).

it mainly sets apart antiphons. The second principal component (vertical)
appears to capture modality: the modes are ordered in what seems to
be the same order as the average pitch height of the modes: 7 > 8 >
5 > 6, and so on. All this is consistent with the idea that genre and
mode are central to the organization of the repertoire. The bottom row of
Figure 5.6 shows a reasonably similar umaP visualization but highlights a
more local clustering structure. In column c, chants are colored by their
genre-mode pair (e.g., mode 4 responsory). The resulting coloring appears
to correspond to more local clusters.

Although these results are preliminary and require more work—the pat-
tern is, for example, less evident in an interval model—the implications
are provocative. It suggests that chants cluster in groups corresponding
to a unique combination of genre and mode. That would mean that for
plainchant, the statistical modes in melody space are not melodic modes, but
something like genre-mode combinations. This challenges the hypothesis
that melodic modes correspond to statistical modes. But before abandon-
ing the hypothesis, one could wonder whether modes in other traditions,
such as raga or magam, do correspond to melody clusters. If so, the notion
of statistical mode might still be a valuable operationalization of a cross-
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cultural concept of musical mode. However, it would not correspond to
chant modes in the traditional sense but to genre-mode combinations.
Promising as this line of thought may be, exploring statistical modes in
the melody spaces of other traditions is, unfortunately, well beyond the
scope of this interlude and left for future work.

STEP5: CHANTING I cannot end this interlude without letting the model
take a final step. After it has learned to produce valid Volpiano, represent
pitch, and distinguish modes and genres—can it chant? Figure 5.7 shows
the first six chant samples generated by the large Volpiano model, using
the clef as the initial seed. All of these are valid Volpiano strings that
resemble actual chant in several ways. First, each sample appears to be
either syllabic, with few notes per syllable (example 1, 2, 3, and 6) or melis-
matic (example 4 and 5), with many more notes per syllable. Of course, the
chants have no text, but since the spacing represents boundaries, one can
immediately see that samples 4 and 5 appear denser or more melismatic.

Next, the samples appear to be somewhat modal. Figure 5.7 shows
the predicted mode of each chant, using a majority vote amongst the
tf—idf classifiers from chapter 4 with various segmentations and genres.
Except for example 5, the predicted mode is consistent with the modes
suggested by the final and range of the chants, shown in the last column of
Figure 5.7. Interestingly, examples 2 and 6—both of the syllabic, antiphon-
like type—include differentiz: formulae that connect a psalm back to the
beginning of an antiphon (see section 2.5). Both differentiz appear in the
Differentize Database (I have included their ids) and are usually found in
chants with the same modes as the predicted ones.

The generated chant may not yet convince someone well-versed in
the repertoire—some future ChantGPT no doubt will—but nevertheless
poses excellent puzzles. How can you phrase the material? How can you
divide time and stress so that the notes start to make sense and melodies
spring to life? The possibilities are endless, but some ways of dividing
the melody into phrases seem much more compelling than others—to
me, in any case. And that brings me to the next chapter (and its sequel,
chapter 8): how are phrases in melodies structured?
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Ex. Generated chant

FIGURE 5.7 — Examples of generated chant. Shown are the first six chants generated by the
large Volpiano model, all of which are valid Volpiano strings. The mode of these examples
was predicted using a majority vote of the tf-idf models with natural units and a pitch
representation from chapter 4. Examples 2 and 6 end with so-called differentiz (blue) that,
in both cases, correspond to the predicted mode.
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Cosine contours

Melodic contour is central to our ability to perceive and pro-
duce music. We propose to represent melodic contours as
a combination of cosine functions using the discrete cosine
transform. The motivation for this approach is twofold: (1)
it approximates a maximally informative contour represen-
tation (capturing most of the variation in as few dimensions
as possible), but (2) it is nevertheless independent of the
specifics of the datasets for which it is used. We consider
the relationship with principal component analysis, which
only meets the first of these requirements. Theoretically, the
principal components of a repertoire of random walks are
known to be cosines. We find, empirically, that the principal
components of melodies also closely approximate cosines in
multiple musical traditions. We demonstrate the usefulness
of the proposed representation by analyzing contours at three
levels (complete songs, melodic phrases, and motifs) across
multiple traditions in three small case studies.
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6.1 Melodic contour

Humans are born with a remarkable sensitivity to melodic contour. This
is dramatically illustrated when newborns cry: the cries of German babies
tend to go down in pitch, but those of French babies go up, even if falling
contours are physiologically easier to produce (Mampe et al., 2009). By
imitating the intonation patterns of their mothers’ language, babies take
the first steps towards a spoken language, guided by the exaggerated
pitch contours of infant-directed speech (Wermbke et al., 2021). Contour
perception remains central to speech later in life for intonation or even
word distinctions—but it is also a key ingredient of human musicality
(Honing et al., 2015).

In the musical domain, melodic contour describes the overall shape of
a melody while abstracting away from the particular pitches and precise
rhythms. Dowling (19778) famously argued that contour plays an impor-
tant role in musical memory. He suggests that melodies are remembered
as two independent parts: a scale and a contour. On this account, a scale
functions as a ladder “on which the ups and downs of the contour were
hung.” Indeed, when listening to novel melodies, contours appear to stand
out more than the exact intervals and influence the perceived similarity
of melodies (Schmuckler, 2016).

Given the importance of contour, this chapter asks for the optimal way
to describe the shape of a melody. How can we capture as much of the
variability in melodic contours as efficiently as possible? One approach
would use a principal component analysis (Pca). We empirically show that
the principal components of melodies do not have arbitrary shapes but
closely approximate cosines. We relate this observation to theoretical
results explaining how the covariance structure of certain random walks
yields sinusoidal principal components.

Our findings motivate a new contour representation that describes
melodic shape as a combination of cosine functions. The proposed cosine
contour space closely approximates the optimal solution provided by pca
but offers several benefits, such as being data independent. The central
argument for this representation is theoretical, and we leave a systematic
comparison of contour representations for future work. Instead, we dis-
cuss three case studies demonstrating the usefulness of cosine contours.

6.2 Contour representations

Melodic contour has been characterized in many different ways. First, eth-
nomusicologists and composers have used contour typologies that describe
a small set of contour types. Huron (1996), for example, distinguished
nine types of contours by comparing the initial and final pitches to the
average pitch on the middle part of a melody. We return to such discrete
descriptions of melodic contour in chapter 8. Second, there are combina-
torial models of contour that rely on the relative ordering of all pairs of
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notes in a melody, summarized in a matrix. We will not further discuss
those models here since these expand rather than reduce the representa-
tion, break the linearity of the melody, and are sensitive to local changes
(Mtllensiefen & Wiggins, 2012).

Instead, we focus on more direct representations, such as—third—rep-
resenting contour by a simple sequence of pitches or intervals. Melodies
extracted from audio are commonly represented this way. Various contour
features, such as the range or pitch deviation, can be derived from this and
have successfully been used in classification tasks (Bittner et al., 2017; Bit-
tner et al.,, 2015; Panteli et al., 2017; Salamon et al., 2012). As we have seen
in section 2.4, melodic contours in symbolic data can also be represented
in this way by using step curves that interpolate the notes (Millensiefen &
Wiggins, 2012; Steinbeck, 1982). This has been illustrated by the black line
in Figure 6.1B.

Fourth, several contour representations can be directly derived from
step curves. Parsons code is a drastic simplification that discards interval
sizes and note durations and only considers the direction of movement
from one note to the next: up, down, or level (Parsons, 1975). We have
encountered step curves and Parsons code in chapter 4. Variants between
these two extremes have also been used by distinguishing various classes
of jump sizes (Mtllensiefen & Frieler, 2004). Another related class of
representations only considers salient notes, such as maxima and minima
(Adams, 1976; Densmore, 1918; Salamon et al., 2012; Steinbeck, 1982). This
often requires special handling of ornaments (Mdllensiefen & Wiggins,
2012), possibly tailored to the repertoire.

Fifth, one can describe melodic contour by fitting a function. For example,
Miillensiefen and Wiggins (2012) fit polynomial functions to the step
curve and represent the contour using the coefficients. The degree of the
polynomial is chosen per phrase, using the Bayesian information criterion
(BIC) to avoid overfitting. Polynomial coefficients are quite difficult to
interpret, however: they change drastically when the degree changes
and can also be sensitive to changes in the data, especially when the
polynomials are not orthogonal and introduce correlations between the
coefficients (collinearity).

Sixth, instead of fitting a function to the contour, one can also decom-
pose the contour and express it as a sum of (orthogonal) basis functions.
Velarde et al. (2016) have used Haar wavelets as basis functions in musical
pattern discovery. The step-like shapes of those wavelets are well suited
to describe particular melodic patterns but make them less suited for de-
scribing the overall contour. An alternative basis of sinusoidal functions
is implicit in Schmuckler’s use of a Fourier analysis to represent melodic
contour (Schmuckler, 1999).

The contour representation we propose in this chapter is similar in spirit
and will decompose the contour using cosines as basis functions. This is
motivated by a curious regularity observed in the principal components
of melodic phrases while working on the case study on the melodic arch
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FIGURE 6.1—Cosine con-
tours represent a melodic
contour as a combination

of cosine functions. (A) A
short melodic phrase illus-
trates this. (B) A piano roll
isinterpolated to obtain a
fixed-length vector of MmIDI
pitches (black curve). This
vector is approximated using
a discrete cosine transform
(colored curves). Increas-
ing the dimensionality
(from, say, the blue to the
green line) improves the
approximation. () The basis
functions correspond to sim-
ple shapes. This makes the
cosine contour space inter-
pretable, as illustrated in (D)
for the first two dimensions.
Every pointin this space
defines a contour shape,
varying in what we call the
descendingness and archedness.
The orange dot represents
the orange contour from (B).
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hypothesis in chapter 2. Before we can explain that regularity, we have to
introduce the data.

6.3 Data

In this chapter, we analyze contours from musical scores at multiple levels
of description, from complete songs to phrases and melodic motifs, as
well as two random baselines.

MOTIFS
corpora introduced in chapter 2: Cantus Corpus and GregoBase Corpus.

All segmentation levels are readily available in the two plainchant

The close connection between music and text in chant suggests a natural
grouping of the notes into words or syllables, and the notation moreover
suggests an even smaller grouping into neumes. The motifs corresponding
to neumes, syllables, or words are all extracted from Cantus Corpus (vo.2),
using only the two most frequent genres: antiphons and responsories.
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PHRASEs Phrase boundaries are not available in the Cantus Corpus, and
we thus extract phrases from GregoBase Corpus (vo.3). As also explained in
section 2.4, the chant notation used by GregoBase includes explicit breath-
ing marks known as pausas, which we can interpret as phrase boundaries.
Phrase markings are also included in the Essen Folksong Collection (Schaf-
frath, 1995). We additionally analyze phrases from German and Chinese
folksongs and focus the discussion on the two largest subsets, which are
also included in Catafolk (see chapter 3): Evk (9782 contours) and Han
(7601 contours).

soNGs Finally, at the level of complete songs, we look at music from
the Lakota people (also known as the Teton Sioux) made available in
the Densmore Collection (Densmore, 1918; Shanahan & Shanahan, 2014).
Analyses of several other corpora from the Essen and Densmore collections
are only included in supplement B2 to simplify the discussion in the main
text.

RANDOM SEGMENTs  Finally, we consider two random baselines: random
segments of melodies and synthetic phrases generated by a random walk.
While the latter are entirely generated, the random segments consist of
actual melodic material. The segments are obtained by randomly slicing a
melody into approximately phrase-length parts so that their boundaries
will usually not overlap with actual phrase boundaries (see page 16 for
details).

SYNTHETICPHRASES  Next, to generate the synthetic phrases, we draw the
number of notes K from a (truncated) Poisson distribution to roughly
approximate the length distribution of phrases.' Then we draw an initial
pitch x, uniformly between 60 and 85 in mip1 pitch space. In every next
step, we draw a step size r;, from a shifted Binomial distribution with mean
zero® and let the next pitch be x; = x;_; + ;. This results in small, approx-
imately normally distributed step sizes. This process yields a sequence of
pitches (x,, ... , xx_,): a synthetic phrase.

PITCH SEQUENCES We convert all melodic material—songs, (synthetic)
phrases, segments, and motifs—to fixed-length pitch sequences, just
as in section 2.4. To do so, we extract the note onsets and pitches (in
quarter notes and MIDI semitones respectively) and then interpolate a
step function through these points. We sample N = 100 equally spaced
pitches from the step function and collect those in a pitch sequence x =
(%95 .-+ »Xy—y), as illustrated in Figure 6.18. These vectors form the primary
data analyzed in this chapter. Unlike section 2.4, we do not center the
contours to have a mean pitch of o. This is sometimes done to make
contours transposition invariant and more directly comparable (Savage
etal., 2017; Velarde et al., 2016), but the proposed representation elegantly
resolves this problem without requiring centering.
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2 We constrain the step sizes
to lie between —12 and +12,
meaning thatjumps cannot
exceed an octave.

1Wetruncate the distribution
sothat K > 3 and use
A = 12. For more details,

see supplement B1.



FIGURE 6.2 — Principal com-
ponents of contours are
roughly cosine shaped
across different levels. (A)
shows the pcs as solid lines
and the cosines as dashed
ones. Thisis a result of the
particular structure of the
covariance matrix (B): matri-
ces of this type have Fourier
basis functions as their eigen-
vectors. This is clearest for
phrases (2) or random seg-
ments from melodies (3).
Crucially, we see the same
effect for synthetic phrases,
generated by random walks
(4). For complete songs (5),
the effect is less clear, prob-
ably due to differences in
typical length (c) and data
size.
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The basic representation makes several common assumptions (e.g.,
Savage et al., 2017; Tierney et al., 2011; Velarde et al., 2016). First, we ig-
nored all rests. Second, we normalize the duration of all contours: both
3-note motifs and 30-note songs are represented by vectors of 100 pitches.
Of course, the relative durations within that melody are retained, so we
should still find simpler contours in shorter fragments. Third, we assume
Euclidean distances between contours. Our analyses require that all con-
tours are embedded in a vector space. Using more sophisticated measures
such as dynamic time-warping distance would require us to reconstruct
a space (e.g., using multidimensional scaling), making all analyses less
transparent.

6.4 Principal components of contours

In the introduction, we asked for the optimal representation that effi-
ciently describes most variability in melodic contour. A principal compo-
nent analysis (pca) would be an obvious starting point. The goal of pca is
to find a set of orthogonal axes, the principal components, along which one
finds most of the variance in the dataset. The axes are described by vectors
from the same space as the original data. And so, if we take a dataset of
pitch sequences, the principal components will be N-dimensional vec-
tors that can themselves be interpreted as pitch sequences. We use this
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in Figure 6.24 to visualize the first four principal components of motifs,
phrases, random segments, and complete songs, all from the plainchant
corpora.? Similar results with German and Chinese folksongs can be found
in supplement B2.

We find that the principal components are highly similar across most
datasets and correspond to well-known contour shapes: descending, con-
vex, and—perhaps—undulating. This can be seen in phrases and random
segments. The effect is weaker for complete songs, especially in smaller
datasets (see the supplement B2). Besides small data sizes, the fact that
songs are much longer also plays a role (see Figure 6.2c). Interestingly,
the pattern is even more evident for the synthetic phrases. Since these are
generated by a random walk, this suggests that the phenomenon has a
mathematical explanation.

To give that explanation, we must first describe pca more formally. We
consider a collection of M contour vectors x,, of length N. Denote the
sample meanby X = 5 Zm x,, and the centered data by %,, = x,, —X. The
first principal component of the dataset is then defined as a normalized
vector u; € RP for which the projected data {u’x,, : 1 < m < M} has
maximal variance. It can be shown (e.g., Jolliffe, 2002) that this is the case
when u, is an eigenvector corresponding to the largest eigenvalue 4, of
the covariance matrix

s= - i@m —R)(x,, — 07, (61)

so that Su; = 4u,. It follows that the projected variance is given by 4,
the largest eigenvalue. The other principal components similarly emerge
as the other eigenvectors of the covariance matrix.

The covariance matrices (Figure 6.28) for both random walks and our
empirical data have a particular structure: they roughly resemble Toeplitz
matrices, which have fixed values along each of their diagonals. Such co-
variance structures are frequently encountered in spatial or temporal data
when the covariance decreases with the distance between the points (An-
tognini & Sohl-Dickstein, 2018; Gray, 2006; Novembre & Stephens, 2008).
That appears to be the case for the contours: there is a higher correla-
tion between successive pitches and a lower correlation between distant
pitches. As a result, the higher covariances are concentrated along the
diagonal. Again, this is clearest for the phrases and random segments.
We see some deviations for motifs: two blocks in the covariance matrix
and corresponding jumps halfway through the principal components.
This is easily explained by the fact that motifs often span only two notes.
In that case, all pitches in the first half of the contour are then perfectly
correlated, as are pitches in the final half. Crucially, despite such devia-
tions from a perfect Toeplitz structure, the principal components are still
well-approximated by cosines.

If you let a Toeplitz matrix grow in size, it asymptotically tends towards
a circulant matrix, preserving properties such as eigenvalues and eigenvec-
tors along the way (Gray, 2006). Circulant matrices have exactly the same
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syllables from Cantus Corpus,
phrases are antiphon phrases
from the CregoBase Cor-
pus, and the songs are song
contours from GregoBase
Corpus.



4 These basis functions cor-
respond to the most popular
version of the discrete co-
sine transform, DcT-11, for
which fastimplementations
are widely available; others
would have been possible
(Strang,1999).

values in every row but are rotated one step to the right with respect to
the previous row. The surprising result s that all circulant matrices have
the same eigenvectors: basis vectors of the discrete Fourier transform.
For real and symmetric matrices, like covariance matrices, this results in
cosine-shaped eigenvectors of increasing frequency—precisely what we
see in Figure 6.2. We discuss all of this in more detail in the supplement B2.
In sum, because of a Toeplitz-like covariance structure, the principal com-
ponents of melodic contours will tend to look like cosine functions.

6.5 Cosine contours

Next, we turn this observation, and its explanation, into a proposal for
anew contour representation. The idea is to approximate the principal
components by cosine functions and then project the contours on those
first few cosines to obtain a low-dimensional representation. This is ex-
actly equivalent to taking a discrete cosine transform (pcT) of the contour
(Ahmed et al., 1974).

Formally, consider a collection of contours of length N as before. We
approximate the k-th principal component u by a vector v, of the form

(v(0), ..., v (N — 1)) whose entries are given by the cosine function*
vi(n) = a, - cos W (6.2)

Here o, = l/ﬁ and oy, = Mfor k > 1are normalizing constants en-
suring thatv; has unitnorm. The projection of a contour x = (xg, ... , Xy_;)
on v, is then given by the inner product ¢, = v{x. Expanding this gives
the usual definition of the discrete cosine transform (pcT-11):

N=1
G = Z X, 0, COS w (6.3)
n=0

Conversely, the contour can be reconstructed from the coefficients c; us-
ing the inverse transform x, = ZZ;; cvi(n). Using only D < N coef-
ficients, we define our low-dimensional cosine contour representation as
Cp(x) = (¢ ... » cp)- Note that we deliberately discard c,. This coefficient
corresponds to a flatline and describes the overall pitch height of a contour:
precisely what we need to get rid of to make the contour transposition
invariant. In this way, we resolve the centering of contours discussed
above.

Why use this representation instead of principal components? Indeed,
a principal component projection, also known as the Karhunen-Loéve trans-
form in this context, is optimal in several ways (Ahmed et al., 1974; Rao &
Yip, 1990). Not only does it decorrelate the data, but it also packs most
variance in the first few transform coefficients (sometimes called energy
compaction) and minimizes the reconstruction error when using only a
few coefficients. However, the transformation depends on the data. Con-
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sional reconstruction. Note
cretely, the principal components of German phrase contours differ from  that data corresponds to Fig-
Chinese ones. Any choice for using one of the two is arbitrary. In con- ure 6.2 and thatwe did not
trast, the DCT is a principled, neutral solution—that approximates the discard the first component
optimal transform. In fact, the pct was initially introduced for similar ¢, of the pctin this figure.
reasons (Ahmed et al., 1974) and was then found to empirically approxi-
mate pca well in domains ranging from image to audio (Rao & Yip, 1990).
The current results suggest that the same applies to melodies.

6.6 Evaluation and case studies

We evaluate the proposed contour representation by comparing it to a
principal component transformation to demonstrate that it is close to the
optimum. We further designed three case studies to illustrate its useful-
ness at the levels of (1) song, (2) phrases, and (3) motifs. The case studies
show that the representation is musicologically meaningful, as it allows
visualization of variation (1), a quantitative evaluation of constraints on
variation (2), and accurate classification into traditional categories (3).
For simplicity, we only look at two-dimensional representations in these
case studies, but higher dimensions may be useful in practice.

oPTIMALITY To empirically verify the claim that the pct approximates
the optimal pca transform, we compute the reconstruction error and the
explained variance ratio using the same data as before. The reconstruction
error is measured as the mean square error between a contour and its D-
dimensional reconstruction, using either the principal components (pca)
or cosines (DcT) as basis functions (so for D = N, the reconstruction is
guaranteed to be perfect). Figure 6.3a shows that the reconstruction errors
of pcT closely approximate that of pca. The error rapidly decreases for the
shorter contours (motifs and phrases), indicating that low-dimensional
representations are already effective. Indeed, to explain 95% of the vari-
ance using cosine contours, you need one dimension for motifs, nine for
phrases, and 61 for songs—this is sometimes called the effective dimension- 5 However, note that Moore
ality (Moore et al., 2018).5 etal. (2018) show that high-
dimensional random walks
CASE STUDY 1: VISUALIZING DIFFERENT TRADITIONS Low-dimensional repre- can falsely appear to have a
sentations of song contours are not likely to be very informative, yet certain  low effective dimensionality.
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FIGURE 6.4 —Songs of three
cultures represented in the
cosine contour space. In

a 2D cosine contour space
(A), every point represents
a contour, as illustrated by
a grid of gray contours in
the background. The first
coefficient ¢; measures ‘de-
scendingness’ (horizontally),
and —c, measures ‘arched-
ness’. Three datasets show
substantial variability, as
best seen from the colored
lines that estimate their den-
sity: Lakota songs are more
strongly descending than
German ones. The average
of all contours in a tradition
(B-D) also illustrates this.
Thick black lines show that
average, while dashed lines
highlight a single contour.
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traditions can be somewhat distinguished in just two dimensions. Fig-
ure 6.4 shows song contours from German, Chinese, and Lakota songs.
We observe that the first component ¢, of a cosine representation roughly
measures the descendingness of the contour, and, similarly, that —1 - ¢,
measures the archedness. Lakota songs often have a strongly descending
overall shape (subplot p), which is reflected in the cosine contours having
relatively high descendingness. Similarly, German songs appear more
arch-like than songs from the other two traditions, translating into lower
values of ¢,.

CASE STUDY 2: THE MELODIC ARCH HYPOTHESIS  In a second case study, we
show that cosine contours provide a simple way to test the melodic arch
hypothesis (Huron, 1996). Recall that the hypothesis claims that phrases
tend to be arch-shaped or descending (see also Figure 6.54 and B). This
can be reformulated as claiming that ¢; (descendingness) and —c, (arched-
ness) are larger for phrases than for random segments of the melodies.
Comparing Chinese and German phrases, we find that all are significantly
(p < 0.001) more descending and arched than the corresponding random
segments (see Figure 6.5¢ and D). This demonstrates that the coefficients
of the cosine contour representation are musicologically meaningful.

CASE STUDY 3: MODE CLASSIFICATION  Finally, we revisit the study on mode
classification in plainchant from chapter 4. In that chapter, we suggest
that the mode of Gregorian chant can be predicted from contours alone,
in that case using a Parsons code contour representation. We represented
chants with tf—idf vectors of weighted motif frequencies, where motifs
were obtained by segmenting chants in various ways. We repeat these ex-
periments using a two-dimensional cosine representation for the motifs.
There is one technical problem: whereas cosine contours are continuous,
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the tf—idf model requires a discrete vocabulary of motifs. Therefore, we
discretize the cosine contour space to a grid and effectively treat every
chant as a sequence of grid cells (Figure 6.6¢). Allin all, this introduces
two new parameters to the experiment: the dimensionality of the cosine
contour and the resolution of the grid. In this case study, we do not tune
these parameters and focus on two-dimensional contours, discretized to
a grid between —20 and 20 with a grid size of 1. For ease of reading, the
Figure 6.68 shows the grid only from —10 to 10. The results are summa-
rized in Figure 6.6D. We see an interesting pattern: the cosine contours
outperform the original results for small motifs such as neumes and sylla-
bles but not for words, which form much longer motifs. This makes sense:
two-dimensional cosine contours are a relatively crude approximation of
those longer contours but may reasonably approximate short motifs.

6.7 Discussion and conclusions

In this chapter, we proposed a novel representation for melodies using the
discrete cosine transform: cosine contours. Observing that the principal
components of melodies tend to be shaped like cosines, this representation
approximates the optimal representation in the sense that it packs most
variance in a few dimensions. Cosine contours meet several other desider-
ata for contour representations. First, the cosine representation is easily
interpretable, as it presents contours as a linear combination of cosine
functions with intuitive shapes. Second, by changing the dimensionality,
the contour’s abstraction level can be varied, allowing for an arbitrarily
small reconstruction error by including more and more dimensions. Third,
this representation allows one to map contours at multiple levels—from
motifs to songs—to one shared space. The cosine representation thus
creates a common ground for comparing contours across traditions and
levels. Thatis possible as, fourth, the representation is independent of the
data and, in that sense, culturally neutral.
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FIGURE 6.5 — Phrases of Ger-
man and Chinese songs tend
to be descending and arched.
This becomes clear when
comparing the average con-
tours to random segments
from the same melodies (a-
B). To quantify this tendency,
we compare the first (c)

and second (p) coefficients
of their cosine representa-
tions, which can be used to
measure descendingness
(c;) and archedness (—c,)
respectively. Consistent with
the melodicarch hypothesis,
we indeed find that both
these quantities are higher
in phrases than in random
segments.



FIGURE 6.6 — Motifs used

for mode classification in
Gregorian chant. (A) A chant
is segmented into motifs
derived from the notation
(neumes) or lyrics (syllables,
words). The blue curves show
the two-dimensional cosine
contours for those motifs. (B)
We discretize the contour
space and represent the
chant as a vector of tf—idf
weighed motif frequencies
(‘grid cell frequencies’). Dots
illustrate the nonzero entries
of this vector for the chant
shown above. (€) The chantis
now a walk through contour
space, but our bag of motifs
ignores the order. (D) Using
these vectors to classify
mode, for the smaller motifs
neumes and syllables, we
outperform our previous
study (chapter 4), which
used a string-based contour
representation (Parsons
code).
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The observation that principal components of spatial and temporal
data can have sinusoidal shapes is not novel but does not appear widely
known. Indeed, the sinusoidal shapes have been interpreted as genuine
effects rather than mathematical artifacts. For example, one study inter-
preted gradients in the principal components of human genetic variation
worldwide as evidence for certain migration events in human history
(Cavalli-Sforza et al., 1993). Closer inspection revealed that those gradi-
ents were sinusoidal artifacts analogous to those reported in the present
paper (Novembre & Stephens, 2008). Closer to MiR, it has been observed
that the training trajectories of deep neural networks have sinusoidal prin-
cipal components (Lorch, 2016) for the same reason. Again, a detailed
analysis (Antognini & Sohl-Dickstein, 2018) revealed these were artifacts
but accurately reflected the behavior of high-dimensional random walks
(Antognini & Sohl-Dickstein, 2018; Moore et al., 2018). We hope this paper
helps to increase awareness of this phenomenon.

The present work only begins to explore this new contour represen-
tation and raises many further questions. One particularly promising
possibility is the application to audio data. In this chapter, we only ex-
plored symbolic data, but the proposed representation equally applies to
acoustic data. One application we hope to explore further is the analysis
of speech intonation using the cosine contour representation. Another
interesting case would be the analysis of folk song recordings. Folk song re-
searchers have, in various ways, relied on contour to organize repertoires
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(Adams, 1976), and one could investigate whether that categorization
can be partly automated using cosine contours. Finally, various contour
typologies have been used in cross-cultural comparisons (Adams, 1976;
Huron, 1996; Kelkar et al., 2018; Savage et al., 2015; Savage et al., 2012)
but have not been systematically evaluated. The present chapter is the
starting point for such a comparison, which we take up in chapter 8.
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Rhythm triangles

ND Now for something completely different: rthythm. Over
the last few years, I have often discussed rhythm in a course
on the evolution of language and music. Students with lit-
tle musical training understandably struggle with scales or
chords and apparently find rhythm easier to grasp. And if
singing is scary, students are happy to clap along, to the point that they
once performed something like Steve Reich’s Clapping music.' In one par-
ticular lecture on rhythm, I would often play music in different meters and
ask them to first clap and then count along. Apparently, counting musicis
not something people normally do. But even if students didn’t manage,
they do usually recognize when something is wrong, like counting a waltz
in four. And that exercise is not only fun, but it explains a musical struc-
ture (meter), illustrates how it can vary, and convinces students that they
themselves have metrical expectations. But mostly, all of this would be an
upbeat for a story about a fascinating musical space: the rhythm triangle.

11 learned this simplified
version from Cerben Groene-
veld. Two groups basically
clap the rhythm of the words
“ananas, appel, peer, banaan’,
with a rest after every word,
and after every two cycles,
one group injects an extra
“druif” at the end.



FIGURE 7.1— The rhythm tri-
angle. All rhythm motifs of
four onsets and a fixed total
duration consist of three in-
tervals and liein a triangular
space (D). The ratio between
the intervals determines
the motifs position in the
triangle. Crosses indicate the
positions of small-integer
ratio rhythms. All this s il-
lustrated for three examples
(a—c). The isochronous motif
(A) with ratios 1:1:1 falls in the
very center of the triangle.
Red lines indicate how to

read the axes for example (B).

A. Regular beat

I I I P

T
0 0.5 1 1:1:1

D. Rhythm triangle 0.1

0.7

~
B. Long-short-short S .
&
9
§

I 1 1.y) Ao

—————————
0 0.5 12:1:1

C. Long-long-short

2:2
0 0.5 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (s) interval 1 (s) —

S

7.1 The rhythm triangle

The story starts around 2003, when Peter Desain and Henkjan Honing
tried to figure out how listeners perceive rhythms. No drummer, however
well trained, will play a rhythm with metronomic precision, exactly as a
written score suggests. That’s probably for the better: the slight deviations
from a ‘perfect’ rendition, the timing, often bring a rhythm to life. But to
notice the timing one needs a reference, and Desain and Honing reasoned
that categorization provided such a reference. Categorization occurs when
your perception breaks up a continuous phenomenon into a discrete set of
chunks or categories. But what could be the continuous space of rhythms
that we might discretize?

Desain and Honing (2003) decided to look at all the rhythmic motifs
that you can make by hitting a drum four times, but in such a way that the
time between the first and final stroke is fixed. You can completely specify
such a rhythm by giving the time between the first three onsets: the first
two inter-onset intervals. If the total duration is fixed, the last interval can
be computed from the first two. As a result, all such motifs live in a two-
dimensional space that happens to be triangular (see Figure 7.1). What
determines the rhythm of a motif is not so much the precise duration of
the intervals but the ratios between the intervals. For example, the motifs
with intervals (0.25,0.5,0.25) and (2, 4, 2) have a different duration or
tempo, but both have the same rhythm: the ratios between the intervals
are the same: 1: 2 : 1. Every point of the rhythm triangle corresponds to
exactly one such rhythm, and vice versa.

Now, to find out whether listeners categorize this continuous rhythm
space, Desain and Honing (2003) played motifs regularly sampled from
the space to conservatory students and asked them to write down the
rhythms they heard. Their responses were very consistent in some parts
of the space and very inconsistent in others. The consistent clumps of the
space centered around small-integer ratio rhythms like1:1:10or1:1:2,and
the inconsistent parts were the boundaries in between.
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Allin all, the results suggested that these rthythms were perceived cate-
gorically. But just in conservatory students, or also in the general popu-
lation? Unfortunately, the method could not address such questions: it
required highly trained musicians who are used to rhythmical dictations.
Around fifteen years later, however, Nori Jacoby and Josh McDermott real-
ized that you don’t need participants to notate rhythms. It is enough if
they can reproduce a rhythm—again, again, and again.

7.2 Unchaining the triangle

What happens if you pass a sentence around a group of people, each one
whispering it into their neighbors’ ear? Every six-year-old can tell you:
this is the telephone game! Scientists of a particular plumage know this as
iterated learning or serial reproduction and do not consider it a game but an
experimental paradigm. Already in the 1930s, Bartlett showed his subjects
drawings which they then had to reproduce from memory. Whatever they
produced would be presented to the next subject. In this way, an Egyptian
hieroglyph of an owl would ten subjects later turn into something like a
bin bag before transforming into a cat: a culturally familiar drawing (Xu
& Griffiths, 2010).

Serial reproduction appears to change whatever you start with into
something that seems highly probable to the subjects, something that
reflects their prior expectations.” The paradigm has gone through a revival
during the last two decades, producing a series of equally fascinating and
funny studies. One study had baboons repeat patterns that flashed up
on a grid of buttons and eventually found they were passing on Tetris
shapes (Claidiere et al., 2014)—a good candidate for an IgNobel price.
Other studies have used it as a model of cultural evolution, in particular
in language evolution,? or, like Jacoby and McDermott (2017), as a tool to
measure complex cognitive biases.

To repeat Desain and Honing’s study with musically untrained par-
ticipants, Jacoby and McDermott (2017) played random motifs from the
rhythm triangle and asked them to simply tap along. Whatever rhythm
the participants produced (averaged over ten reproductions) would be
passed on to another participant. In this way, their responses form a walk
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FIGURE 7.2 — Rhythm priors
in different subject groups
from all over the world (Ja-
coby et al., 2021). Colors
indicate probability density
relative to a uniform distri-
bution. (a) The priorin three
groups of non-musicians
compared to seven groups of
musicians (B). Small-integer
ratio rhythms are high-
lighted by red crosses and
explainedin (c). Adapted
from figure 2 from Jacoby
etal. (2021) (cc-BY 4.0).

3 This was the topic of my
master’s thesis (Cornelissen,
2017) and motivated the
original proposal for this
Ph.D. project.

2 Such a chain of humans
reproducing something can
be seen as a so-called Gibbs
sampler that estimates the
distribution of their prior
expectations (Criffiths &
Kalish, 2007; Harrison etal.,
2020).
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FIGURE 7.3 — Raster plots. A raster plot visualizes motifs of two intervals: the shorter interval
is plotted on the left, the longer one on the right. The points are then ordered vertically,
showing slower motifs at the top and faster ones at the bottom. Roeske et al. (2020) argues
that both music (B) and nightingale songs (c) have categorical rhythms. The flower-like
shape of the raster plots is an artifact: it also appears when plotting random intervals (A).

through rhythm space, and this walk tends to gravitate towards expected
rhythms, in that way revealing the rhythmical biases of their subjects. The
authors repeated this experiment with both North American and Tsimané
participants. The Tsimané are a Native American people that live in Bo-
livia and have had relatively little contact with Western music. The study
revealed that their rhythmic prior was strikingly different from those of
the North American participants.

By now, Nori Jacoby has gathered a large network of researchers and
tested a very diverse group of participants from over fifteen countries
(Jacoby et al., 2021). I have reproduced the results from their preprintin
Figure 7.2; you can also find the Tsimané and North American participants
there. The steady pulse of the isochronous motif 1:1:1is present everywhere,
asarel:1:2anditsrotations,1:2:1,and 2 :1:1. One major source of
variation turned out to be the presence of the 3:3: 2 rhythm. This is a very
common rhythm in many Sub-Saharan and South American traditions. It
is extremely prominent in Malinese dancers but entirely absent in Chinese
non-musicians. There you instead see a lot of the 2: 2 : 1 rhythms (slightly
more to the outside of the triangle). In the group of Malineses musicians,
you can even find modes that correspond to the complex 7 : 2 : 3 ratio,
which the musicians recognized as the rhythm of a popular dance called
Maraka.

7.3 Flowers

While we told this story in Evolamus, it further unfolded in the Music
Cognition Reading Group. In one of our meetings, we were joined by Carel
ten Cate, an expert in birdsong. The reading was a paper by Tina Roeske
et al. (2020) that analyzed the intervals between syllables in the songs of
thrush nightingales and zebra finches, and compared these with inter-
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vals between notes in recordings from several musical traditions:# Indian
raga (8 pieces/performances), Cuban salsa (40), Uruguayan candombe
(39), Malian Jembe (46), Tunisian stambeli (9), Persian zarb, and Western
‘piano’ music.5 The study claimed that categorical rhythm—the use of a
discrete set of rhythms—is not unique to human music, but also found in
the songs of nightingales, although not in zebra finches.

At least as attractive as this claim were the beautiful visualizations.
Flower-shaped figures complete with stems and petals somehow visual-
ized rhythmic motifs of two successive intervals. These raster plots repre-
sented each motif by two points on the same horizontal line: the smaller
one of the two intervals is shown on the left, and the larger one on the
right. All motifs are then sorted by their total duration, so that slow motifs
are on the top, and fast motifs at the bottom of the plot. Beautiful as they
may be, their flower-like shape is an artifact. A similar shape appears
when you plot random sequences of intervals. What is informative about
these plots is the patterning within the flowers, which is not only relatively
small but also difficult to interpret. It is, for example, hard to identify the
lines on which all motifs with the same ratio, say 2 : 1, fall.

The raster plots puzzled the reading group. Wouldn’tit be easier, Henk-
jan Honing wondered, to create a phase plots? In such a plot, you show
one interval horizontally and the next one vertically (see for example Rav-
ignani et al., 2016). Indeed, phase plots seem to be easier to read (see
Figure 7.4), as different diagonal lines now correspond to different ra-
tios, and the further you move from the origin, the longer the duration of
the motifs becomes. You could also blow up the space near the origin to
transform a phase plot into a ratio plot, which shows the duration of a pair
vertically against the ratio of its intervals horizontally. The paper also did
something like this, but ratio plots are probably still more intuitive.

7.4 Scattered triangles

But instead of two-interval motifs, why not add a third and plot all motifs
of three successive intervals in a rhythm triangle? To plot motifs with
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FIGURE 7.4 — Two alternatives
for raster plots: phase and
ratio plots. In a phase plot
(A), the firstinterval is plot-
ted against the next interval.
Blowing up the space near
the origin transforms this
into a ratio plot (B). Both
plots are arguably easier to
read than raster plots (Fig-
ure 7.38B).

5 The IEMP corpora contain
fewer recordings: there are
for example only 5 songs

in the Cuban salsa and

son corpus. They might
have counted individual
instruments. Their Western
piano music consists of
performances of Bach's music
from the MAESTRO dataset

4 Most of the music came
from the Interpersonal Entrain-
ment in Music Performance
corpus (IEMP; Clayton et

al., 2022), which contains
recordings, in various styles,
of individual instruments
playingin larger ensembles.
All of the recordings are pub-
licly available, together with
onsets of all instruments.



8 Preliminary analyses of
another dataset indeed
confirm this.

7 They write that “rhythms
were not discretized across
zebra finches, even within

a colony.” They observe a

“a roughly unimodal distri-
bution of rhythms, with a
prominent mode at1: 1ratio”,
but looking at the triangle
plot, this seems wrong.

6 It is easy to produce plots
that answer those questions
from the original IEMP
corpora: seesupplementci
for Cuban salsa and son
triangles per song or per
instrument.

varying total duration in a rhythm triangle, you would have to normalize
the total duration so that you are effectively plotting the ratios between
the intervals. The phase plots however showed that duration is clearly
a relevant parameter: you find different types of motifs at slow versus
high tempos. There is a simple solution: show all motifs in the triangle
with a scatter plot, and use a color scale to visualize their duration. On
the following pages, I show triangle plots for all of the datasets analyzed
by Roeske et al. (2020).

The resulting plots raise all sorts of questions. Do the different clusters
in the music corpora correspond to different instruments? Or perhaps to
different songs?® Or why are some triangles, like Western piano music,
asymmetrical? If you rotate it by 6o degrees, you don’t get the same pat-
tern. What are the purple clusters in candombe? Why do we see a vertical
band in jembe music? And why indeed do we see the same in nightingale
song? And what about the zebra finches? Roeske et al. (2020) find no
discretization in their songs,’” while the triangle shows an abundance of
discretization, across different timescales. Carel ten Cate suggested that
these clusters may correspond to songs of different individuals.®

And what about small-integer ratios? This is often cited as a universal
tendency, yet Roeske et al. (2020) write that “a statistically significant
tendency to produce 1: 2 ratios was detected only in Western piano and
Indian raga performances”. And “no significant tendency to produce 1:2 or
1:3 ratios was detected in any other music, but in Malian jembe, we found
a significant tendency to avoid 1: 3 rhythms and favor [non-small-integer
ratios] instead” (my emphasis). Indeed, the triangle plots of jembe music
contains some clusters that do not correspond to a small-integer ratio,
and the same applies to Uruguayan candombe. My aim is not to address
all these issues here, but to illustrate how visualization may raise new
questions, and hopefully help to address them. And so let’s see what else
we can plot—surely, humans and nightingales are not the only species
with categorical rhythm.

FIGURE 7.5 — Rhythm triangles show the rhythmicinventories of musical datasets and
vocalizations of two bird species (pages 81-84) . Plots show the data from Roeske et al.
(2020). Asequence of intervals is split into overlapping motifs of three intervals each. The
ratios between the intervals determine the location in the triangle, and the color indicates
the total duration. Darker motifs are slower, lighter ones faster. Small-integer ratio rhythms
are indicated by crosses. Most music datasets (A—G) show clusters, although these are
least pronounced in Persian zarb (G). The zebra finch (H) plot shows a very fine yet clear
clustering structure, especially when split out in duration ranges of 10oms (3). Nightingale
songs (1) have less distinct rhythmic clusters, but the motifs are clearly not uniformly
distributed either.
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FIGURE 7.6 — Rhythms in the song of the lemur Indri Indri appear to be categorical (De
Gregorio etal., 2021). Their vocalizations form phrases, and intervals that fall between
phrases are roughly twice as long as those within phrases. For example, a motif of three
intervals with types within-within-between has a ratio around 1:1:2 (WwB, orange in B). The
clusters appear to fall just beside the small-integer ratio rhythms. Finally, there is a slight
difference between rhythms in male and female productions (c).

7.5 Singing primates

The work by Tina Roeske and colleagues inspired Chiara De Gregorio et al.
(2021) to look at the rhythm of indri vocalizations. The Indri indri is a
lemur, a primate species native to Madagascar, known for its particularly
loud singing duets. The name “lemur”, according to Wikipedia, is derived
“from the Latin lemures, which refers to specters or ghosts that were ex-
orcised during the Lemuria festival of ancient Rome.” Ironically, lemurs
themselves have almost been exorcised from this planet: they are critically
endangered. The 39 individuals that De Gregorio et al. (2021) studied are,
in fact, around 1% of all indri left. Analyzing recordings of their duets, the
authors found that the inter-onset intervals in their vocalizations are not
uniformly distributed but cluster around the ratios1:1and1: 2.

The rhythmic categories can be seen in the rhythm triangles in Fig-
ure 7.6. In particular, I colored the motifs by their type in subplot B. Indri
songs consist of phrases, and De Gregorio et al. (2021) classified each in-
terval as either falling within (w) a phrase or between (B) two phrases
(or between two isolated notes). This divides motifs of three intervals
into eight possible types: within-within-between (wwg), within-between-
within (wBw), and so on. Every cluster in Figure 7.68 clearly corresponds
to such a type. The blue waw cluster lies mostly right of the integer ratios
1:2:1, which corresponds to a short(ish)-long-short motif. The orange
rhythms of type wws are short-short(ish)-long, and the green ones (Bww)
are long-short-short(ish). Indri vocalizations, in short, appear to use two
duration values: along one between phrases and an approximately twice
as short one within phrases.

Science journalists jumped on this story: “Singing lemurs have a dis-
tinctly human sense of rhythm, study finds”, The Guardian wrote. Al-
though I applaud the media attention from a conservationist point of
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FIGURE 7.7 — Rhythms in the babbling of the sac-winged bats tends to be isochronous
(Fernandez et al., 2021). The motifs are assigned to one of five categories, based on the use
of corresponding syllables in the adult repertoire (UPS = Undifferentiated proto-syllables).
We show the categories separately (B) as well as combined (c), which suggests that there
are slight differences in the rhythm of different categories. Neutral vocalizations are for
example more isochronous (lower nPVI) than affiliative ones (large nPVI). The nPVI scores
are averaged over te six syllable trains in each category.

view, it seems overly enthusiastic. A rhythmic repertoire of two dura-
tion values—in recordings of multiple individuals spanning more than
a decade—seems rather limited. Rhythmic categories in human music,
meanwhile, are extremely flexible: they vary across styles, within styles
across songs, and within songs across instruments. And so while the
finding that indri vocalizations contain rhythmic categories is certainly
interesting, labeling it “distinctly human” seem premature.

On a more technical note, the triangle plot in Figure 7.6 also shows
that there is less isochrony in the data than the paper appears to suggest.
An isochronous rhythm is a steady beat where the intervals between all
onsets are the same. And while isochronous pairs of intervals (1: 1) are
indeed common in indri vocalizations, three successive intervals of equal
duration (1:1:1) are almost absent. This can be seen by looking at the very
center of the triangle, which is relatively empty.

In fact, you can use the distance between a motif and the center of
the triangle as a measure of isochrony: the closer to the center, the more
isochronous a motif is. In the triangle, we are looking at motifs of length
3, but you can similarly define (n-gram) isochrony for other lengths. Inter-
estingly, for motifs of length n = 2, the average isochrony is essentially
the opposite of the normalized pairwise variability index (nPVI), a metric
that was originally introduced to measure durational contrasts in speech,
but that has also been used to study music.? The rhythm triangle thus
suggests a novel rationale for the nPVI: it is exactly proportional to how
un-isochronous the average rhythmic motif of length 2 is. I explain all of
this in more detail in supplement c2.
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FIGURE 7.8 — Rhythms in vocalizations of the sperm whale and two bat species (Burchardt
& Knérnschild, 2020). The click trains of sperm whales (A) are used for echolocation and
are extremely regularly timed (note that the plot zooms in on the center). The social
vocalizations of both bat species (B and C) are also strongly isochronous, be it to a lesser
extent.

7.6 Abestiary of triangles

The nPVI has recently been used in a number of studies that address how
isochronous or beat-like certain animal vocalizations are. Since the data
in these studies has been made publicly available, we can use it to test our
novel metric of isochrony. But first I briefly discuss four of the studies and
visualize the original data in thythm triangles.

The first study concerned babbling bats. Producing speech sounds
requires very fine control over your articulatory muscles, and one idea
is that babbling (“da-da!”) allows us to gain that kind of control: an
articulatory workout. One may expect more species to have these practice
periods if they at least modify their vocalizations based on what they hear
from others—if they are so-called vocal production learners. And indeed,
something like babbling is common among songbirds. Knérnschild et al.

(2006) also reported babbling in sac-winged bats (Saccopteryx bilineata).*
These bats have a large vocal repertoire, consisting of 25 different syllables,
which combine to form ten types of vocalizations.

Before acquiring the adult repertoire, the bats go through a babbling 111 cannot exactly replicate
phase, that according to a recent study by Fernandez et al. (2021) shares thestatistics in their table S4:
many key characteristics of babbling in human infants. The presence of eventhe (o1 statistics deviate
aregular beat appears to be one of those commonalities. Based on nPVI slightly, and the nPVIscores |
scores, the authors conclude that “four of the five different syllable train computeareall lower.
categories [...] had a regular beat”. Figure 7.78 visualizes those categories,
and suggests that the affiliative category, which is most spread out and 10 The bats are named after
has highest nPVI, is the category without a regular beat.” sacs in their wings in which

The second paper, Burchardt and Knérnschild (2020), concerns isola- males brew their signature
tion calls of adult sac-winged bats (Saccopteryx bilineata), as well as isola- smells from “genital and
tion calls of Seba’s short-tailed bat (Carollia perspicillata) and click trains gular secretions.” If you
of sperm whales (Physeter macrocephalus). 1 have plotted the rhythmsin wonder how they do so,
Figure 7.8. The click trains of sperm whales are extremely isochronous, consult Voigtetal. (2005).
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FIGURE 7.9 — Rhythms in fish sounds (Burchardt et al., 2021). Shown are three types of
sounds produced by fish in the Mediterranean. The /Kwa/ sounds of the rayfinned genus
(A) and the vocalizations of the brown meagre (B) are largely isochronous, while those
of Roche’s snake blenny (C) are very irregular. That was the reason Burchardt et al. (2021)
included this species.

which is not surprising since they are used for echolocation. The calls of
Seba’s short-tailed bat are largely isochronous, although the plot suggests
some clustering around the motifs 2:1:2,1:2:2,and 2: 2 : 1. These calls
are about twice as fast as the calls of the sac-winged bat, which also have
an isochronous rhythm.

The third paper, Burchardt et al. (2021), analyzed the sounds made by
several fish species from the Mediterranean: a particular reproductive
vocalization of the brown meagre (Sciaena umbra), the so-called /Kwa/
sound that is “most probably produced by species from the rayfinned
genus Scorpaena”, and vocalizations of Roche’s snake blenny Ophidion
rochei with long, irregular gaps. The latter indeed seems completely irreg-
ular, while the brown meagre’s vocalizations and /Kwa/ sounds tend to be
quite isochronous. The /Kwa/ sounds also contain some very high-integer
ratio rhythms, or what Roeske et al. (2020) might call ornaments. These
occur when otherwise isochronous calls are preceded by a very short call,
as can clearly be seen in the waveforms (see Figure 1 of the original paper).

The fourth paper, Filer et al. (2021), compared vocalizations of two
Australian frog species: the wallum sedge frog (Litoria olongburensis, WsF)
and the eastern (common) sedge frog (Litoria fallax, esF). If the two species
vocalize at the same time, they are in competition for a place in the acoustic
space and the paper suggests that the frogs adapt the rhythm of their
vocalizations in the presence of competitors. Figure 7.10 visualizes the
rhythms for both species in the presence and absence of competitors.

7.7 lsochrony

With a small bestiary of rhythm triangles and datasets in place, we can
evaluate the measure I introduced above: the n-gram isochrony, which
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FIGURE 7.10 — Rhythms in vocalizations of two sibling frog species (Filer et al., 2021). The
eastern sedge frog (A) and wallum sedge frog (B) are in acoustic competition and adjust the
rhythm of their vocalizations when competitors are present. This is not very clear from the
triangle plots and possibly better seen in particular duration ranges (C).

generalizes the nPVI. It measures the distance between a given motif
of length 7 and the completely isochronous motif of # identical inter-
vals. Higher values of » intuitively correspond to higher-order notions of
isochrony. If a rhythmic dataset has a high average isochrony for n = 2,
pairs of successive intervals are frequently identical. But for n = 6, the
dataset has to contain many sequences of six successive, almost identical
intervals: a much stronger form of isochrony. Irrespective of n, the score is
normalized so that a value of 1 indicates perfect isochrony, while a value of
o corresponds to the opposite, limit case where all intervals are negligibly
short except for one long interval—the corners of the triangle forn = 3
(see section c2 for details).

I have plotted the distribution of isochrony scores for motifs of length
n = 2, 3, and 6 in Figure 7.11, summarizing the entire bestiary. Below the
datasets from Roeske et al. (2020), you find data for the indri (De Gregorio
et al., 2021). The figure illustrates a point I made earlier: isochrony for
pairs of intervals (n = 2) may be common since there is a peak close to 1,
but longer isochronous sequences appear to be absent (n = 3 and n = 6).
The situation is different for the brown meagre and the sac-winged bat
(S. bilineata), where even six successive isochronous intervals are pretty
common. But the most extreme level of isochrony, unsurprisingly, can be
found in the echolocation calls of the sperm whale.

Figure 7.11 also shows isochrony scores for the musical datasets (Roeske
et al., 2020). Western piano music stands out by its high isochrony scores,
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FIGURE 7.11 — Distribution of isochrony scores across several musical traditions and non-
human vocalizations. Isochrony scores indicate how much n-gram motifsofn = 2,3

or 6 consecutive intervals deviate from isochronous motifs. A value of 1 indicates perfect
isochrony. Scores forn = 2 are inversely proportional to the nPVI score (A). At that level
we see isochrony in vocalizations of the indri (cf. De CGregorio et al., 2021), but isochronous
motifs of length 3 or 6 (B-c) are absent. High scores in (c) mean that subsequences of six
intervals are very regular. This is the case for the extremely regularly timed echo-location
vocalizations of sperm whales. Vocalizations of Ophidion rochei are completely irregular,
resulting in a wide distribution of isochrony scores. In music, we see high levels of isochrony
in Western ‘piano’ music—or harpsichord music, really—and more rhythmic diversity in
salsa and jembe music.

Data is from (1) Roeske et al. (2020), (2) De Gregorio et al. (2021), (3), Fernandez et al. (2021),
(4) Burchardt and Knérnschild (2020), (5) Burchardt et al. (2021) and (6) Filer et al. (2021).

even for n = 6. This dataset consists of recordings of ‘piano’ music by
Bach, but these are treated as single-instrument recordings, and voices
are therefore not differentiated. This means that we are effectively look-
ing at a surface rhythm of multiple voices, which is much denser (and
presumably full of sixteenth notes, as it was written for harpsichord). The
other datasets, especially jembe and salsa music, contain more varied
rhythms. Allin all, the isochrony score proposed in this interlude seems
to be a useful generalization of the nPVI, capable of describing different
orders of isochrony.
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To conclude, the second half of this interlude can be read as an exercise in
musical typology, in which we compare the variability of a musical feature
(types of rhythmic motifs) across datasets. To be more precise, it was an
exercise in continuous, cross-species rhythm typology, since the feature of
interest could vary continuously, and we studied it in different species. But
in every case, it remains an empirical question whether the feature does
vary continuously, or whether it can be divided into discrete categories. It
might, as with the indri, or it might not, as with the sedge frogs.

The question of categoricity applies not only to rhythm but to contin-
uous features generally. We can ask the same about melodic modes in
plainchant, like in chapter 5, or about shapes of melodies. Indeed, that
will be the topic of the next chapter. To give you a flavor, the core idea is
already illustrated in Figure 7.11. If we, for example, look at the isochrony
distribution (n = 2) of jembe music, we see multiple peaks or szatistical
modes. This can only happen if there are multiple clusters of motifs that
have different distances to the isochronous motif. Multimodality, in this
case indicates categorical rhythm.” This suggests that one can look for cat-
egoricity by testing for multimodality, and that is what the next chapter
will do for melodic contour.” Let’s dip into it.
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13 | have already applied a
Hartigans’ dip test for mul-
timodality to the isochrony
distributions shown in Fig-
ure 7.11: those with a darker
shade are significantly mul-
timodal. But because of
footnote 12, this is not a
good test of categoricity. A
better alternative considers
the distribution of pairwise
distances instead of only the
distances to the center. The
idea is explained in detail

in the next chapter, and ap-
plying it to rhythm is left for
future work.

12 The converse need not be
true: symmetrical clusters
(categoricity) that are all
equally far from the center
resultin a unimodal distribu-
tion of isochrony scores. This
seems to be the case in some
music datasets (e.g., raga).
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Shapes of music

How can one best describe the shapes of melodic phrases in
musics from across the globe? Previous studies have often
relied on typologies with a discrete set of contour types. We
question their adequacy: we find no evidence that phrase
contours cluster into discrete types in German and Chinese
folksongs or Gregorian chant. The test for clustering we pro-
pose applies the dist-dip test of multimodality after a umar
dimensionality reduction. The test correctly identifies cluster-
ing in a synthetic dataset of contours but not in actual phrase
contours. These results argue against the use of discrete ty-
pologies. Additionally, we identify a hidden parameter in
two discrete typologies that can strongly skew the type dis-
tributions. Our findings suggest that melodic contour is best
seen as a continuous phenomenon. We end by revisiting the
melodic arch hypothesis using a continuous approach to con-
tour.

Introduction 96 e Melodic contour typology 97 e Phrase
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e Phrase contours do not cluster 102 e Rescuing discrete
typologies 104 e Embracing continuous typology 105
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1 Frances Densmore tabu-
lated the modality of the
songs she collected in pre-
cisely this way, but was well
aware that this notion of
modality was alien to the
music she was studying.

8.1 Introduction

Recent years have seen a renewed interest in the search for musical uni-
versals: properties common to most or even all musics across the world
(Brown & Jordania, 2011; Mehr et al., 2019; Savage et al., 2015). Musical
universals can help to identify the constraints within which most music
is made, which may, in turn, point to biological predispositions for music
(musicality) and inform theories about its evolution (Honing, 2018). The
frequent use of isochronous beats is, for example, consistent with a bio-
logical, cognitive capacity for beat perception (Winkler et al., 2009). But
music might also be shaped by physiological constraints. A frequently
cited universal is the prevalence of arch-shaped or descending melodic
phrase contours, sometimes known as the melodic arch hypothesis (Brown
& Jordania, 2011; Huron, 1996; Savage et al., 2015; Savage et al., 2017). It
has been suggested that the physiology of our vocal system explains their
prevalence, making pitch contours that fall towards the end of a phrase
easier to produce (Tierney et al., 2011).

Questions of universality go hand in hand with classification: they
usually require typologies that break down music into a set of characters
or features with several possible values or types (Brown & Jordania, 2011).
Examples of features are the type of scale used or the type of rhythmic sub-
division. Both of these are discrete characters, but there are also continuous
characters, like tempo when measured in beats per minute. Even though
it can vary almost continuously, melodic contour is often treated as a dis-
crete character and described as ascending, descending, arch-shaped, and so
on. Mapping the frequency of those contour types across cultures then
allows one to assess cross-cultural generalizations like “arch-shaped and
descending contours are the most frequent contour types across cultures”.
Besides synchronic questions, typologies also play a role in diachronic ques-
tions. In the words of Herzog (1937, cited in Adams, 1976), “it is through a
discovery of types that we hope to find the stylistic relationships, which
are often genetic and historical relationships between different melodies.”

The validity of all such comparative questions depends on the validity of
the typology used. Consider, for example, a character modality taking the
values major, minor, and irregular based on the presence of the major third
of the scale. While this could make sense for common practice music, it is
an awkward description of the modalities in Gregorian chant or the songs
of the Lakota (Densmore, 1918)." This problem will be familiar to compar-
ative linguistics. If a typologist wants to compare the category ‘noun’ in
different languages, a descriptive linguist could insist that ‘noun’ has a
different, or even incommensurable, meaning in each of those languages
(cf. Haspelmath, 2018). But while linguistic typology has flourished de-
spite the problems inherent to comparison, ethnomusicology has largely
avoided comparison and questions of typology (Nettl, 2005, ch. 6).

In this chapter, we revisit the question of melodic contour typology:
how to describe the shapes of melodic phrases? We first review some of
the literature on contour typology. The common assumption seems to
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have been that “that melodic contour types do exist and can be empirically
defined” (Adams, 1976, but also e.g., Savage and Brown, 2013). We ques-
tion that assumption. Contour types cannot be said to exist if contours
do not cluster accordingly. But we fail to find any evidence for clustering
in phrases from three repertoires, both within each repertoire and when
aggregating them. As a result, discrete typologies partition the contour
space somewhat arbitrarily. If the partition is not fair, one risks misrepre-
senting the variability. We show that this is precisely what two typologies
turn out to do. Although we also propose a remedy using a maximum
entropy criterion, the fact remains that melodic contour appears to be a
continuous phenomenon.

8.2 Melodic contour typology

Contour is a key aspect of melody. When still in the womb, humans already
appear to be sensitive to the pitch contour of the mother tongue (Mampe
et al,, 2009), and once born, contours remain a central cue for our first
steps in language learning. With such importance in early life, it is not
surprising that Dowling (1978) argued that contour and scale underpin
our melodic memory. Composers who want to write catchy melodies must
also attend to their contours. Indeed, many composition treatises discuss
how to shape melodies. Piston (1970) for example opens his Counterpoint
with a chapter on the “melodic curve”, while Perricone (2018) reassures
us that “there are only five basic melodic shapes or contours” (p. 179):
ascending, descending, arch, inverse arch, and stationary. Such accounts
are primarily meant prescriptively, not as a cross-cultural description of
contour shapes—even though we will see some overlap.

Adams (1976) identifies a plethora of melodic contour descriptions in
the academic literature. Some narrate how the melody progresses, others
settle for word lists, yet others for graphs. Some authors propose ten types,
others six, yet others four. Descriptions are often ambiguous—how to
distinguish a bow from an arch?—and sometimes even inconsistent. Alan
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FIGURE 8.1—Three contour
typologies. (A) Densmore
(1918) divided Lakota songs
into five broad classes based
on their contour, each iden-
tified by one representative
song. Such aninductive
approach contrasts with the
deductive typologies by (B)
Adams (1976) and (€) Huron
(1996). Adams’ typology con-
siders all possible orderings
of the four boundary pitches.
A melody, forexample, has
type 3412 ifitsinitial (e.g.,3)
is above the final (2) and if
itin between first reachesa
higher (4) and then a lower
(1) pitch. Huron's typology
considers the ordering of the
average pitch on the first,
middle, and final parts of a
melody.



2 The instructions allow cod-
ing of “clear ‘hyper-phrase’
contours” as a single contour
and advice the annotators to
ignore “temporary interval
changes that do not greatly
affect the dominant melodic
contour.”

Lomax’ cantometrics project, for example, coded melodic shape as arched,
undulating, descending, or terraced. But where the first three apply to the
most characteristic phrase in a song, the latter applied to the entire song.
Its successor, CantoCore (Savage et al., 2012), only includes phrase-level
contour types, but six of them (horizontal, ascending, descending, U-shaped,
arched and undulating) and the annotator is given considerable freedom
to resolve ambiguities.?

An early and more systematic contour analysis is Frances Densmore’s
1918 study of the music of the Lakota people (also known as the Teton
Sioux). She visualized the contours of complete songs by plotting the
accented notes (the downbeats in her transcriptions) while ignoring ac-
cidentals. This allowed her to cluster songs into five classes with similar
contours and apparently sometimes similar social functions. It is not
entirely clear how Densmore classified the songs. Sometimes the global
shape seems to be the crux (class A usually has only descending intervals),
but she also mentions characteristic local features (such as a repetition of
the lowest note in class C or the ascending opening in D). Such features
are not mutually exclusive, but they suggest the classes are based on more
than contour alone. Densmore identified one exemplary song for each
class, making her typology entirely culture-specific.

Deductive typologies are not culture-specific since their types are de-
rived from first principles. An example of this is Adams’ rather intricate
typology (Adams, 1976). It considers all possible orderings of a melody’s
four boundary pitches: the initial note I, the final F, the first occurrence of
the lowest pitch L, and the highest H. To simplify matters, assume that
there are k distinct boundary pitches, with L = 1the lowest and H = k the
highest, so that I and F fall in between. Now a contour type is something
like (I = 2,H = 4,L = 1,F = 3) or 2 4 1 3 in short. This means that the
initial is below the final, and the melody reaches the highest and lowest
pitch in between. There are fewer than four values whenever the final (or
initial) is also an extreme value, asin (I = 2,L = 1,H = F = 3)or21 3:
starting somewhere in the middle, descend to the lowest and end on the
highest pitch. With this representation, one can determine that there are
15 orderings, illustrated in Figure 8.1.

Although Adams’ paper is perhaps the most comprehensive study of
contour typology, it attracted few followers. The typology best known
today was proposed by David Huron and is conceptually much simpler.
Theideais to reduce a melodic contour to three pitches: theinitial I, final F,
and the average pitch M of all notes in between (the middle). The contour
types are the nine possible orderings of these three pitches. For example,
ifI < M > F, the contour type is convex, if | = M > F, it is horizontal-
descending, and so on. Huron also mentions a variant of the typology that
divides the melody into three equal parts and uses the average pitch on
the initial, middle, and final third. This should be less sensitive to the
initial and final pitch, and like other later studies (e.g., Savage et al., 2017;
Tierney et al., 2011), we will consider this variant.
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Whereas Densmore’s typology is derived empirically and therefore
culture-specific, Adam’s and Huron’s typologies are derived from first
principles and culture-independent. But which typology should one use?
To address that question, we analyze the same phrase contours and ran-
dom segments as we studied in chapter 6.

8.3 Phrase contours

We use two collections of ‘German’ folksongs from Catafolk: the Erk of
1700 songs (Erk & Bohme, 18934, 1893b, 1894) and the Bihme subset of
704 songs (Bohme, 1895). In addition, we analyze 152 folksongs from Nova
Scotia, collected by Creighton (1932), and the three Chinese subsets in
Essen: Han, Shanxi and Natmin. Finally, we include phrases from Grego-
rian chants in three liturgical genres: antiphons, alleluias, and responsories.
All of these come from the Liber Usualis in the GregoBase Corpus, using
breathing marks to indicate phrase boundaries (see Figure 2.3).

Just as in chapter 6, all phrases are converted to fixed-length pitch se-
quences: we interpolate the melody and then sample N = 50 pitches
equally spaced in time. Using a fixed number of pitches allows us to com-
pare phrase contoursirrespective of their length. This means we effectively
normalize the phrase duration and usually interpret the temporal axis as
the relative position in the phrase. Phrase length, nevertheless, has an
obvious effect on contour shape: the more notes, the more shapes you can
make. To study such effects, we also record phrases’ length (number of
notes) and duration (in quarter notes).

The idea that phrases may be shaped according to multiple types raises
a question: do these types mostly or perhaps only show up when a melody
is segmented in phrases or also when sliced up differently? To evaluate
this, we also extract random segments of all melodies, that are roughly as
long as phrases but unlikely to overlap with them (see section 2.4). Finally,
we create two cross-cultural datasets by aggregating phrase contours and
random segments sampled from each of the nine datasets. In this chapter,
we primarily discuss the aggregate dataset.
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FIGURE 8.2 — Tempo distribu-
tions of songs of the Maidu
and Nuu-chah-nulth. Shown
are histograms and kernel
density estimates (KDE). The
tempos in Maidu music (a)
clusterin multiple groups,
suggesting a typology with
a slow, medium and possibly
fast type—which would not
be appropriate for music of
the Nuu-chah-nulth ().
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FIGURE 8.3 — The dip-dist test discriminates clustered and unclustered synthetic datasets.
(A) Synthetic contours are samples from a Markov process whose parameters are estimated
from actual phrase contours. We create a clustered dataset by subsampling contours close to
five suitably chosen cluster centers. Panel (B) shows a two-dimensional umap visualization
of the uniform dataset (gray) in which the clustered dataset (colored) is projected. The
grid of black contours illustrates that UMAP organizes the space almost exactly like two-
dimensional cosine contours (“ascendingness” horizontally, “archedness” vertically). The
cluster centers (encircled) correspond to distinct shapes. () The dip-dist test applies the
Hartigans’ dip test on pairwise distances: a multimodal dataset should have a multimodal
distribution of pairwise distances. (p). The dist-dip test correctly identifies the clustered
dataset as multimodal but only the distances in a ten-dimensional umAP embedding (i.e.,
using the umap-dist test). This lower dimensional manifold appears more informative in
that it more clearly separates the clusters (E).

8.4 Clusterability with the dist-dip test

Returning to our central question—which typology should one use to de-
scribe melodic contour?—we would argue that a discrete typology should
be appropriate for the data, in the sense that the types should correspond
to clustersin the data (cf. Spike, 2020). Let us illustrate this using a simpler
musical feature: tempo. When measured in beats per minute, tempo is a
continuous character. A tradition might nevertheless use only a few dis-
tinct tempo ranges, such as a slow, medium, and fast tempo. If we plotted
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the distribution of tempos of many songs, one would expect that distribu-
tion to have three peaks or modes. Figure 8.24 illustrates that the songs
of the Maidu roughly follow that pattern (Densmore, 1958).3 A typology
with three corresponding types (slow, medium, and fast) would therefore
be appropriate for Maidu music—but it is inappropriate for the music of
the Nuu-chah-nulth (Densmore, 1939).

What we have just discussed is also known as clusterability: the question
of whether the data show signs of clustering (Adolfsson et al., 2019). One
way to formally test this is by looking for multiple statistical modes: peaks
in the probability density. The Hartigans’ dip test (Hartigan & Hartigan,
1985) does precisely that for univariate data like the tempos. It compares
the null hypothesis that the data is unimodal with the alternative hypoth-
esis that there are multiple modes. The test revolves around a statistic
known as the dip: the maximal distance between the empirical cumula-
tive distribution function and its closest unimodal approximation. In the
case of the Maidu songs, the test confirms our intuition that the tempo
distribution is multimodal (p < 0.001), while it cannot reject unimodality
for the Nuu-chah-nulth songs (p = 0.08).

The Hartigans’ dip test works for univariate data but not for multi-
variate data like the standardized contours. A simple trick can, however,
reduce the multivariate problem to a univariate one. As illustrated in
Figure 8.3c, the dist-dip test (Kalogeratos & Likas, 2012) tests whether a
(multivariate) distribution is multimodal by checking whether the (uni-
variate) distribution of pairwise distances is multimodal according to
Hartigan’s dip test. After all, if a distribution is multimodal, you expect
to find at least two types of pairwise distances: small within-cluster dis-
tances and larger between-cluster distances. This means the distribution
of pairwise distances is multimodal, precisely what the Hartigans’ dip test
can evaluate.

A systematic comparison of clusterability methods recommends the
dist-dip test for a wide range of scenarios (Adolfsson et al., 2019). To
further ascertain whether this test can reliably detect clusters in contour
data, we first evaluate it on a synthetic dataset in which we enforce a
cluster structure (see Figure 8.3a and B). The synthetic contours differ
from those in chapter 6, as they are generated by a Markov process (see
Figure 8.3a). We sample the contour’s length and initial pitch from a Pois-
son and binomial distribution respectively, and then walk through pitch
space according to the transition probabilities observed in the actual data.
We normalize the duration, center the contour, and sample 50 equally
spaced pitches to obtain a pitch sequence as before.

Generating many synthetic contours in this way results in a uniform
dataset in the sense that it does not exhibit any clustering structure. By
appropriately subsampling, one can create a clustered dataset from the
uniform one. To find good cluster centers, we fit k-means, with k = 5,
to a dataset of 25,000 synthetic contours and then select the 1000 con-
tours nearest to the centroids found by k-means. To ensure the clusters
correspond to shapes and not, say, pitch height, we used a cosine contour
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3 Tempo transcriptions from
Catafolk, see chapter3.



4 We used the Python
package diptest, which is
a port of the R package by
Martin Maechler.

5 Note that instead of a two-
dimensional manifold, we
give UMAP more freedom
and measure distances in
a10-dimensional manifold.
This is one of the reasons for

using UMAP instead of t-SNE:

the latter does not scale
well to higher-dimensional
projections.

representation (see chapter 6) while selecting neighbors. This resulted in
a uniform dataset without clusters and a clustered one with five equally
sized clusters. We then computed the dist-dip test on 30k pairwise dis-
tances sampled from both datasets# and it utterly failed to reject the null
hypothesis for the clustered dataset (p =~ 1).

The distribution of distances indeed looks unimodal (Figure 8.3p), even
though the datasetis designed to contain clusters. And as shown in Fig-
ure 8.3, those clusters are clearly visible in a low-dimensional projection
made using umap (Mclnnes et al., 2018). This nonlinear dimensionality
reduction technique learns a low-dimensional manifold that aims to pre-
serve the global structure of the original data. This leads us to propose
another test of multimodality: the umapr-dip test: the dist-dip test but now
applied to the distances on a lower, ten-dimensional manifold learned
by umar.> The umar-dip test correctly rejects the null hypothesis for the
clustered dataset but not for the uniform one (Figure 8.3p). It appears
that the umapr distances better capture the cluster structure of synthetic
contours than Euclidean distance does.

One may wonder whether testing the projected data for multimodality
is valid since the result now heavily depends on the projection. This is
comparable to how principal component analysis is sometimes used be-
fore statistical testing in other clusterability approaches (Adolfsson et al.,
2019). Alternatively, one can think of umar-dip as a formal test that can
replace the visual inspection of low-dimensional visualizations for signs
of clustering. But still, dimensionality reduction techniques like UMAP can
sometimes suggest clusters that are not present in the data. This behavior
would make the multimodality test overly sensitive. Importantly, how-
ever, this would strengthen a negative result: if umar-dip does not find
evidence for multimodality, it probably isn’t there.

8.5 Phrase contours do not cluster

Returning to the actual phrase contours, Figure 8.4 shows the distribution
of pairwise distances for phrase contours and random segments and the
two synthetic datasets. The color coding highlights that the dist-dip test
only rejects unimodality for the clustered, synthetic dataset. In other
words: contours do not appear to cluster.

To rule out that this is an artifact of the representation, we evaluated
eight different ones (see supplement p1 for an overview of the experimen-
tal setup). Besides the raw pitch contour, we transposed the contours to
make their shapes comparable irrespective of absolute pitch: we center
contours to have mean o (cf. Savage et al., 2017), or transposed them so
that the tonic (cf. Tierney et al., 2011) or final note of the phrase is o. Next,
in the normalized version of a contour, the minimum pitch is o, and the
maximum pitch is 1 (cf. Adams, 1976). Then we add two relative represen-
tations. The first measures the intervals between consecutive pitches, and
the second only does this after smoothing the pitch contour. Finally, we
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FIGURE 8.4 — Melodic phrase contours do not cluster. Shown are the distributions of
pairwise distances between contours in various conditions. If contours cluster, we expect
multimodal distance distributions. We test this using the Hartigans’ dip test and let colors
indicate p-values, such that grey distributions are not significantly multimodal (¢ = 0.05).
Eight different representations (vertically) and two metrics (horizontally) are analyzed:
Euclidean distance and the distance in a lower-dimensional umap embedding. The latter
successfully discriminates unclustered from clustered synthetic data (c vs. D; see also
Figure 8.3). However, neither in phrases (A) nor in random segments from actual melodies
(B), the test fails to find clear evidence for clustering.

compute the cosine contour, which describes the shape of a contour as a
combination of cosine functions (chapter 6). To rule out that our distance
metrics prevented us from finding clusters, we also used dynamic time
warping (DTw) dissimilarity besides Euclidean and umar distance. Intu-
itively, if two sequences are identical except that they have warped time
differently—speed up here, slow down there—their pTw dissimilarity is
zero.

With none of the eight representations, we find evidence for the clus-
tering of phrase contours or random segments using any of three sim-
ilarity metrics: Euclidean, pTw, and umap distance.® The same applies
when we only consider unique contours, reduce the dimensionality of
the contours from 5o to 10, or analyze individual datasets separately (see
supplement D2).

One may expect the length of contours to have an effect: there are
simply fewer possible shapes when you have only four notes instead of
ten, and so you should see more clusters amongst shorter phrases. If
we split out our analysis by length, the umar-dip test indeed indicates
multiple modes for the smaller phrases up to 5 notes, and sometimes also
for the longest ones of around 15 notes or more. But for most contours,
with average lengths between 5 and 15, we still find no convincing evidence
for clustering of phrase contours. In contrast, we do find such evidence
for the synthetically clustered dataset (see supplement p3).
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FIGURE 8.5 —The tolerance parameter € in Huron’s typology can strongly distort the type
distributions. Huron’s typology compares the average pitch on a contour’s start, middle,
and end, where pitches less than € semitones apart are considered equivalent. (A) shows
how type frequency depend on €. (B) We propose to choose € such that contours are

as evenly distributed over types as possible: when the type distribution has maximal
entropy. While asmallvalue (¢ = 0.2) obscures partly horizontal types, a large one

(e = 3.0) exaggerates it. (c) shows this by coloring some types in a UMAP visualization,
while (D) shows this as a histogram. The maximum entropy criterion makes it harder to
find frequency differences. This improves our confidence in observed effects, such as
arch-shaped contours being more frequent in German folksongs than Chinese ones (E vs. F,
middle row).

8.6 Rescuing discrete typologies

If contours do not cluster, it is hard to see how Adams’ assumption that
“contour types do exist and can be empirically defined” can be right. One
is indeed free to define types, but these definitions will be somewhat arbi-
trary: the contours suggest no obvious partition. Can discrete typologies
then still play a role in comparative questions? Only if they partition con-
tours fairly and do not skew the type frequencies—precisely what Huron’s
and Adams’ typologies appear to do.

FIXING HURON’S AND ADAMS’ TYPOLOGY  Recall that Huron’s typology—the
same argument applies to Adams’—compared the average pitch over three
segments of a melody. These averages are usually not exactly identical,
and so two pitches are treated as equivalent if their absolute difference
is below a tolerance parameter €. With zero tolerance, € = O semitones,
horizontal contours will be extremely unlikely, but with a tolerance of an
octave, € = 12 semitones, virtually any contour will be considered horizon-
tal. In short, the choice of € influences how evenly contours are divided
over the classes. If not appropriately chosen, the tolerance parameter will
strongly distort the type distribution, exaggerating the frequency of some
types at the cost of others (see Figure 8.5).
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And so, what is a good choice of €? Tierney et al. (2011) use € = 0.2
semitones without motivation, and Huron does not report a choice of €.
We propose a more principled alternative: to choose € so that the classes
are as small as possible. Firstly, in the absence of clusters, dividing the
space as equally as possible seems the best one can do. Secondly, this
would ensure our typology contains no redundant, largely empty classes.
And thirdly, this effectively imposes a strong prior against frequency dif-
ferences between types. If we nevertheless find frequency differences
across traditions, this strengthens the result. One can measure a type
distribution’s evenness with its entropy. A completely deterministic dis-
tribution has zero entropy, while a flat or uniform distribution has the
highest possible entropy.

Concretely, we propose to choose € so that it maximizes the entropy
of the type distribution. Which € yields maximum entropy depends on
the dataset, and changing € will change the typology. This means that the
typology will be slightly different for different datasets. One way around
this is to estimate a value of € on a cross-cultural dataset and then use the
resulting typology on each of the individual traditions. Applying this to
the aggregated phrase contour datasets, we find that € = 1.4 semitones
maximizes the entropy (Figure 8.58). We discuss the implications for the
melodic arch hypothesis in the next section.

LEARNING THETYPES  But even with a maximum entropy criterion, it is con-
ceivable that the types do not divide the space fairly. If one nevertheless
prefers to use a discrete typology, one can take inspiration from Dens-
more’s inductive typology and learn the types. While her typology was
specific to Lakota songs, the method is quite general: identify a number of
representative contours and let those represent the types of a typology.

A computational analog could be a k-means typology, where one clusters
the contours into k types by assigning them to the class of the nearest
cluster centers. These centers are iteratively updated to minimize the
within-cluster variance and come to represent the types in the typology,
similar to Densmore’s use of exemplars. This results in types that more
accurately reflect the contours they represent than types in deductive
typologies like Huron’s or Adams’. All contours, for example, start and end
flat because the melody is stable during the first and final note, which is
reflected in the types (see supplement b4). This approach can be extended
by using more sophisticated clustering methods and representations.

8.7 Embracing continuous typology

An inductive or learned typology effectively starts from the perspective
that melodic contour is a continuous phenomenon—precisely in line with
our findings. This is not the end of contour typology, but it does ask for a
different approach: one that does not use distinct types but embraces the
continuous nature of contour.
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FIGURE 8.6 — Average phrase contours differ across three traditions. The average phrase
contours of German folksongs, Gregorian chant, and Chinese folksongs compared to
baselines of random melodic segments from the respective corpus (gray). They support the
overall tendency for arch- or descending average contours but show interesting differences:
the Chinese average is not arch-shaped and, strictly speaking, a counter-example to the
average hypothesis. This illustrates how a continuous approach to contour typology.

Inspiration, again, comes from David Huron. Huron (1996) proposed his
typology as a tool to investigate the melodic arch hypothesis. His analysis
of over 6000 songs from the Essen folksong collection found that the most
frequent phrase contour types were convex and descending contours. But
Huron also computed average phrase contours by taking all phrases with
a certain number of notes and averaging the pitches at every time step.
When plotted, the average contours revealed clear arch shapes. Notably,
this analysis treats melodic contour as a continuous character.

We replicate this result in Figure 8.6 for phrases from three traditions.
That figure also shows the average shapes of the random segments in grey,
which are almost entirely flat (cf. chapter 2).7 While the chant phrases
tend to be arch-like, the average phrase contour of Chinese folksongs
looks quite different: not only is the range much larger, its shape is best
described as descending, or perhaps horizontal-descending. We also
observed this in chapter 6, but earlier studies (such as Savage et al., 2017;
Tierney et al., 2011) seem to have overlooked this. One can, however, also
see this using a discrete typology. Figure 8.5E and F show that descending
contours are more common than convex ones in Chinese folksongs, while
they are less common in German folksongs.

Strictly speaking, all this argues against two possible formulations of
the melodic arch hypothesis: (1) that Huron’s convex type is most frequent,
and (2) that the average contour is arch-shaped. This underscores the
need for precisely formulated, testable hypotheses. In fact, chapter 6
proposed one. If ¢; and ¢, are the first two coefficients of a cosine contour
representation, ¢; measures its descendingness and —c, its archedness,
and so we proposed the following:

HYPOTHESIS: ¢; and —c, tend to be larger for melodic phrases
than for random melodic segments.

This hypothesis was confirmed in German and Chinese folksongs.

106 Chapter8 ARTICLE Shapes of music



8.8 Conclusions

In this chapter, we revisited the description of melodic contours. Analyz-
ing phrase contours from three musical traditions, we found no evidence
that the contours form clusters, which contradicts the assumption that
contour types exist. We then showed that two discrete typologies, by
Huron and Adams, contain a hidden parameter that can lead the typology
to favor certain types over others. Although we proposed a remedy using
a maximum-entropy criterion, we argue for a continuous approach to
contour typology. This directly shows cultural differences and leads to a
precise, testable reformulation of the melodic arch hypothesis.

A shortcoming of this work is the limited cross-cultural validity of the
data analyzed. Except for Savage et al. (2017), most previous studies have
relied on the Essen Folksong Collection, and this study only added Gre-
gorian chant as a third tradition. However, our central finding—that
contour shapes do not cluster—is negative. For that, cross-cultural valid-
ity is not as much of an issue: even the limited data we analyzed serves as
a counter-example. The same is true when rejecting two formulations of
the melodic arch hypothesis. But we think that the methods we proposed,
and the continuous methodology we argued for, are sufficiently general
to be applicable in other traditions—or even different domains.

Phrase contours, after all, are not only studied in music but also in
language. The study of intonation in phonology has produced various
cross-cultural generalizations, such as the decline from the beginning
towards the end of a phrase, or the start of a phrase by a sharp rise known
as the reset (Ladd, 2001). At the same time, models have been proposed to
describe the intonation contours found in particular languages, such as
the ToBI system in English (Silverman et al., 1992). This revolves around a
grammar for combinations of high and low tones and gives rise to a similar
set of questions addressed in the present paper. One recent study, for
example, used functional data analysis (FpA) to analyze the pitch contours
of falling and rising intonation types in English.® Although the authors
do not explicitly test for this, as we do here, the results suggest that these
contours form clusters (Zellers et al., 2010). Analogous to this paper, the
authors move from a discrete analysis (ToBI) of intonation contours to a
continuous one (FDA). A more recent study Gerazov and Wagner (2021)
uses t-SNE to visualize intonation contours, and an obvious next step
would be to apply the clusterability methods developed in this paper
to verify whether those contours indeed cluster. More generally, this
convergence calls for an interdisciplinary study of contour in speech and
song.
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CHAPTER

Interlude






Melody squares

ELODIC CONTOUR is a superficial phenomenon and de-

liberately so. It abstracts away from individual pitches

to describe only the general movement of a melody.

In this interlude, I would again like to zoom in on the

pitches that underlie a contour using the same lens
as in chapter 7. There we broke down rhythms into smaller motifs and
visualized these in a rhythm triangle. Now we ask if we can use the same
approach to visualize the melodic motifs that are present in a given corpus
of melodies.

9.1 Plotting a plot

Rhythmic motifs of four onsets can be plotted in a triangular space only
when the total duration of the motif has been normalized, and the last
interval is completely determined by the first two intervals. Butitis not
clear how such a construction would extend to melodies. Whereas time
only moves forward, pitch moves both up and down, and so there is no
obvious equivalent of the duration of a motif. One could try to normalize
motifs using the pitch interval between the first and final note, or perhaps
between the highest and lowest one, but both seem rather unnatural.
Instead, we will consider smaller motifs of three pitches. These form only
two pitch intervals and can be visualized naturally in a phase plot that
shows the first interval horizontally and the next interval vertically.

To visualize a melody in a phase plot, we break it down into a sequence
of overlapping motifs and plot each motif in phase space. Figure g.11il-
lustrates this for the opening phrase of Ay mi! dame de valour, a so-called
virelai by the French composer Guillaume de Machaut (c. 1300-1377). The
song opens with an outcry—Ay mi/— whose sharp drop of a major sixth
makes for a rather unusual motif. Most motifs later in the melody indeed
lie closer to the center of the space. Some motifs even occur multiple times,
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like motifs 13 and 14, whose intervals are identical to motifs 4 and 5. And
thatis precisely what I want to look at in this interlude: which parts of
the phase space are most frequently visited by a collection of melodies?
How frequent are different motifs in a given corpus?

But first, it will be helpful to take a closer look at the space and how it
is structured. Figure 9.2 shows that each quadrant contains motifs with a
particular contour: moving clockwise from the top left, one finds concave,
ascending, convex, and descending motifs. Motifs on the vertical axis start
with a repetition, while those on the horizontal axis end with one. Next,
the interval between the first and final pitch—1I will call this the span of
amotif—is identical in all motifs that fall on one diagonal line running
from the top left to the bottom right. For example, the motif (4, —2) =
(+M3, —M2) that moves up a major third and then down a major second
falls on the same diagonal as the motif (—3, 5) = (—m3, +P4), and both
span a major second.' I will call the main diagonal from the bottom left to
the top right the antidiagonal.

Visualizing motif frequencies in this space using a scatter plot, as Fig-
ure 9.1 perhaps suggests, is not an option. I will be looking at musical
scores in which the set of possible intervals is discrete, and so most points
will overlap. One could jitter the points: add some Gaussian noise so that
the points form small blobs. Sometimes the sizes of these blobs are clear
at first sight but scatter plots often suffer one of two problems—certainly,
the triangles in chapter 7 did. Either you plot too many points on top of
one another (overplotting), or you make the points too small to be visible
at all (underplotting). Both problems prevent you from seeing the density
of the data accurately. Fortunately, visualizing the density is easy in this
case: we color each grid cell to show how frequent the corresponding
motif is.

The color coding does require some attention. Highly frequent motifs
will be colored so much darker than the rest that it becomes hard to see
differences between infrequent motifs. It might make sense to discard
the most frequent items, but a more principled solution scales the colors
in alogarithmic fashion. Now one however faces the opposite problem:
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FIGURE 9.2 — A guide to the melody phase plot. (A) Each quadrant contains motifs with a
different contour (blue boxes). Motifs on the vertical and horizontal axes either start or end
with a repetition (black boxes). On the diagonal (B) one finds motifs that start and end on
the same pitch (examples A-F). The antidiagonal (c) contains motifs that take two identical
steps (examples 1-6). Finally, motifs on a diagonal (dashed red lines) have the same span:
the interval between the first and final note.

low-frequency items can start to dominate the visualization. One unique
motif among, say, 10° motifs stretches the color scale to 107 if it has to
describe all motif frequencies. As I am interested in the more common
motifs, I will cut off the color scale at 0.001: less frequent motifs will all
get the same color, while those that are completely absent from the data
are masked to remain white. This cut-off point depends on the part of
the space that is actually shown: a little more than a perfect fifth up and
down in this case.

To summarize, the idea is to visualize the frequencies of three-note
melodic motifs in a two-dimensional phase space that I will call the melody
square. In more technical terms, it simply plots the bigram log-frequencies
of pitch intervals. And precisely because of its simplicity, I expect a melody
square to be insightful.

9.2 Commonalities and rarities

I produced melody squares for 22 corpora which I had readily available
in Catafolk (see chapter 3): Chinese folksongs from the Essen Folksong
Collection (Schaffrath, 1995), from which I also took three corpora of
German folksongs®. Then I included nine Native American corpora3 from
the Densmore collection (Shanahan & Shanahan, 2014), songs from Nova
Scotia,* and some corpora encoded by Damien Sagrillo with songs from
Ireland,’ Scotland,® Germany,” and Luxembourg. Finally, I included a
corpus of 31 Tsimané songs, recorded by Jirgen Riester (1978). Before we
show all melody squares individually, let’s look at some averages.

Commonalities and rarities 13
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FIGURE 9.3 — Melody squares reveal common and rare melodic motifs in corpora from three
geographical areas. The plots in (A) show the log-frequency of two-interval motifsin (1) all
corpora combined, (2) European, (3) North American, and (4) Chinese corpora only. This
reveals several common patterns (B), which are discussed in the main text. It also reveals
which motifs are rare (black dots). Panel (c) orders these by their span to show that the
corpora avoid spanning intervals in particular ways. The second of these plots for example
shows that motifs spanning a major second (M2) up or down rarely consist of two successive
minor seconds (m2). Tritones (TT), finally, appear to be avoided altogether.

Figure 9.3 shows a global melody square based on all corpora next to
melody squares for the European, North American, and Chinese corpora
separately. I will sketch some common tendencies and rarities in these
melody squares. These observations should not be read as established
empirical claims but as hypotheses yet to be rigorously tested. The first
thing to notice is that we mostly see small steps: the most frequent motifs
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alllie in the center of the square. Thisisindeed a commonly cited universal
tendency (e.g., Brown & Jordania, 2011; Savage et al., 2015) Second, we see
that repetitions tend to be common, as motifs on both axes often have a
relatively high frequency. Third, so are what one might call alternations:
motifs on the main diagonal that jump to another pitch and then move
back to the first pitch.

Fourth, the squares appear to be mirrored in the main diagonal, which
means that the motif (x,y) tends to be as frequent as (—y, —x). Musically,
this means that motifs are reversible: For a motif (5, —2) that goes up a
fourth and then down a minor second, there is an equally frequent re-
verse motif (2, —5) that goes up a minor second and then down a fourth.
Fifth, squares also appear to be mirrored in the antidiagonal: (x,y) and
(y,x) are roughly equally frequent. For example, the motif (5, —2) spans
aminor third via a fourth up and a whole tone down, and the symmetry
suggests that there will be equally many motifs spanning a minor third
by first moving down a major second: (—2, 5). In that sense, motifs are
exchangeable. These two are curious, and not always perfect: in the North
American square, the top right quadrant does for example not mirror the
bottom left one in the main diagonal, thus violating reversibility. But the
pattern seems apparent enough to deserve further study. All the more, if
one considers that some other symmetries are clearly absent: sixth, the
squares are asymmetrical in the horizontal or vertical axis.

Seventh, many motifs are commonly absent, which means that the
squares are not convex. I have organized the rare motifs by their span in
Figure 9.3c to highlight that these corpora systematically avoid spanning
particular intervals in certain ways. You for example rarely find motifs
spanning a minor second, either up or down, with a major second. Simi-
larly, major seconds are usually not spanned by two minor seconds: the
use of successive semitones, in short, is rare. In the same spirit, minor
thirds are not often spanned using major thirds, nor do these corpora
approach major thirds via minor thirds or fourths. The last observation,
however, does not hold for the European square where the motif (5, —1) is
in fact quite common. Motifs that either include or span a tritone, finally,
appear to be avoided altogether.

9.3 Atree of squares

Besides commonalities, Figure 9.3 also reveals differences between the
corpora. The North American square has an upper quadrant which is
relatively empty compared to the other squares. In a previous chapter, we
observed that songs of the Lakota on average have a strongly descending
contour (see Figure 6.4), and indeed the infrequent quadrant contains
precisely the motifs with an ascending contour. The European square
stands out from the others by its more frequent use of minor seconds,
even in motifs with a larger span, while the Chinese square largely avoids
minor seconds. These observations suggest that differences in musical
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FIGURE 9.4 — Melody squares allow corpora to be classified to their area of origin. See the
main text for details.
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style are reflected in melody squares. And so one wonders: can you turn
this around and use melody squares to measure style similarity?

To find out, I looked at slightly larger melody squares ranging from
—12 to 12 semitones along both axes,® and measured pairwise distances
between all those squares.? Next, I applied hierarchical clustering to the
obtained distance matrix, where I measured the distance between two
clusters as the distance between their furthest members. This grouped the
22 corpora in a tree, shown in the corner of Figure 9.4. The tree has three
main branches that largely correspond to the European, North American,
and Chinese corpora. The squares in Figure 9.4 were manually organized
to reflect this clustering structure. The three groups are outlined in dif-
ferent colors, and squares that are neighbors in the tree are connected by
black lines.

If we interpret the three branches as broad areas of origin and allow the
songs from Nova Scotia to be grouped with the European corpora, only the
Tsimané corpus is clearly misclassified. It is however quite distant from
the other corpora in its branch, as can be seen from the branch length.
Within the European group, German corpora cluster closely together, as
do songs from Ireland, Scotland, and, to a lesser extent, Nova Scotia. In
the Native American group, the Ute appear close to the Pueblo peoples,
with which they have indeed been in cultural contact, The Lakota and
Ojibwe are similarly from geographically close areas. But the tree suggests
that the Pawnee and Nuu-chah-nulth are also quite similar melodically,
even though the former have lived around Nebraska, while the latter live
on Vancouver Island.

9.4 Conclusions

In this interlude, I looked for a melodic equivalent of the rhythm trian-
gle and proposed the melody square. It shows the relative frequency of
melodic motifs of three pitches in a two-dimensional phase plot. The
squares show which motifs are common and rare across multiple corpora
and revealed some interesting generalizations. But what explains the pat-
terns we observed, for example in Figure 9.3? This will be left for future
research, but perhaps an explanation can be found in the scales that are
used. For example, if European songs often use scales with a semitone step,
while Chinese corpora prefer pentatonic scales without minor seconds,
that could explain why motifs with a minor second are more frequent in
the European melody squares.

Where I looked at actually recorded rhythms in chapter 7, this interlude
only analyzed musical scores. This was a pragmatic choice: Catafolk made
all these different corpora readily available to me. Butit should be possible
to extend this approach to continuous pitch recordings. One could, for
example, average the pitch estimate of each individual note in a recording
and visualize the intervals between them as a scatter plot in phase space.
This would require both reliable pitch estimates and accurate annota-
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FIGURE 9.5 — Melody squares
for Arvo Part’s Summa.
Works by Part are often
constructed according to
numerical procedures or in-
spired by geometric shapes.
Some of the constructions
underlying Summa appear to
be reflected in the melody
squares of the four voices
A-D. Unraveling the regulari-
ties in Summa is the topic of
chapter1o. Note that these
squares were produced while
ignoring all ornamental
notes.
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tions of note onsets and offsets. Such datasets are indeed available. The
Erkomaishvili Dataset, to name just one interesting example, contains tran-
scriptions, pitch contours, and note annotations of polyphonic Georgian
vocal music (Rosenzweig et al., 2020).

If continuous melody squares prove fruitful, one could even move on
to visualize animal sounds in a similar fashion: complement the zoo or
rhythm triangles with a zoo of melody squares. A visual compendium
showing how different musics, or even animal sounds, from around the
globe organize their melodic movements. And then one might find one
type of music to stand out: the music of Arvo Part. The strange symmetries
in the melody squares of his piece Summa (Figure 9.5) are the product
of strict regularities hidden beneath the surface of his music. What is
going on here—how does Pirt’s music work? Time to move on to the next
chapter.
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Algo Part

Arvo Partis one of the most popular contemporary composers,
known for his highly original tintinnabuli style. Works in this
style are typically composed according to precise procedures
and have even been described as algorithmic compositions.
To understand how algorithmic Part’s music exactly is, this
paper presents an analysis by synthesis: it proposes an algo-
rithm that almost completely reconstructs the score of Summa,
his “most strictly constructed and most encrypted work,” ac-
cording to Part himself in 1994. The piece is analyzed and
then formalized using so-called tintinnabuli processes. An
implementation of the resulting algorithm generates a musi-
cal score matching Summa in over 93% of the notes. Due to
interdependencies between the voices, only half of the mis-
takes (3,5%) need to be corrected to reproduce the original
score faithfully. This study shows that Summa is a largely al-
gorithmic composition and offers new perspectives on the
music of Arvo Part.
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Notes can be found at the
end of this chapter.

10.1 Introduction

Music and algorithms share a long history, but rarely has their marriage
been as fruitful as it has been in the hands of the Estonian composer Arvo
Part. According to one study, Part was the most frequently performed con-
temporary composer from 2011 until 2019." Not only is his music popular,
butitis also highly original. In the 19770s, Part developed a unique compo-
sitional technique, known as tintinnabuli, that is deeply algorithmical due
to its use of numerical procedures. The main melody may, for example,
walk down a scale, moving one step further with every measure. Alterna-
tively, it may be determined by the text: in his Missa Sillabica, the number
of syllables in a word determines the melody for that word. Examples
such as these raise the question how algorithmic Part’s music precisely
is. Can all notes in a score be explained by formal procedures? And when
does the composer deviate from those, if at all?

To address such questions, I propose a type of computational music
analysis (cf. Anagnostopoulou & Buteau, 2010) that one could call analysis
by synthesis. Motivated by the idea that one cannot understand what one
cannot create, the aim is to implement an algorithm that reconstructs as
much of a score as possible. By measuring the reconstruction error, the num-
ber of errors in the reconstructed score, one can evaluate the algorithm. In
practice, such an analysis is an iterative process in which one successively
refines the rules to further reduce the reconstruction error. As the error
decreases, the explanatory power of the algorithm increases, until adding
new rules no longer seems to be theoretically productive. Adding a rule
that explains only a single note, for example, is not very productive and
similar to “overfitting” a mathematical model. But up to that point, the
algorithm provides an answer to a central question of musical analysis:
how does the piece work?

The idea of using algorithms to analyze Pért’s music is not new.* Shvets
(2014) describes multiple constructions commonly found in the work
of Part using concepts borrowed from programming languages, such as
loops. Shvets and De Paiva Santana (2014) then went on to implement
several models of Part’s compositions. In a more formal analysis, Roeder
(2011) proposes to understand Part’s compositional procedures as musi-
cal transformations (cf. Lewin, 1987). His analysis effectively results in
several (functional) programs that model certain aspects of Part’s music.
This paper takes these ideas one step further by first formalizing a piece,
then implementing an algorithm to reconstruct the full score, and finally
quantitatively evaluating that against the original: a complete analysis by
synthesis.

Our case study looks at Summa. This piece was written in 1977, one year
after Part wrote his first piece in tintinnabuli style (Fiir Alina). Summa is
best known as a composition for mixed choir or solo voices but was origi-
nally written for two voices (tenor and bass) and six instruments (Hillier,
1997). It has since been adapted for many instrumental combinations,
from string quartet to trombone quartet. The composition is intricately
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FIGURE 10.1— Excerpt of Fiir Alina (mm. 2—7). This piano piece was Arvo Part’s first work in
his tintinnabuli style. The right hand plays a melodic voice (M-voice) that mostly moves
stepwise, and which is freely composed. The left hand has the tintinnabuli voice (T-voice),
which is restricted to notes from the B-minor triad. The relation between the two voices
is shown on the right: the T-voice plays the highest triad note below the m-voice, but one

octave lower.

structured, but many of the underlying regularities will escape notice
when listening to a performance, or even when studying the score. Indeed,
some of the procedures identified in this paper seem to have escaped pre-
vious analyses of Summa (Hillier, 1997; de la Motte-Haber, 1996; Patrick,
2011). Arvo Pirt may have anticipated this when he wrote:

I have developed a highly formal compositional system in
which I have been writing my music for 20 years. In this
series, Summa is the most strictly constructed and most
encrypted work. The encryptions are found in many layers
of the score.3 (Part, 1996)

Iread this as an invitation to decrypt Summa. But first, let me introduce the
tintinnabuli style and the terminology that Hillier (1989, 19977) developed
to describe it-some of which Pért himself has adopted.

10.2 Tintinnabuli

At the heart of the tintinnabuli style lie two voices: a melodic voice or
M-voice and an accompanying tintinnabuli voice or T-voice. The M-voice
is usually diatonic and tends to move in steps around a pitch center. Itis
sometimes freely composed, but more often constructed according to nu-
merical procedures. The accompanying T-voice is even more constrained.
It can only use notes from a central tintinnabuli triad, and is determined
by its M-voice according to a strict procedure, such as always using the
first note in the triad above the m-voice. The resulting texture is often
homophonic, further emphasizing the unity of the two voices.

For Part, the M- and T-voice are indeed much more than a compositional
technique. The M-voice “signifies the subjective world, the daily egoistic
life of sin and suffering; the T-voice, meanwhile, is the objective realm
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FIGURE 10.2 — Tintinnabuli positions for an A minor triad. Solid notes show the A minor
scale as a melodic voice, and open notes show tintinnabuli voices in the five different
positions introduced by Hillier (1997). His terminology is shown above the staff, the
numbering used in section10.4 below it.

of forgiveness” (Hillier, 1997, p. 96). Their duality is only appearance:
they really are a “twofold single entity,” as has been summarized in the
equationl+1=1

To clarify the terminology, let’s consider two famous examples (see
e.g., Hillier, 19977 for more extensive analyses). Figure 10.1 shows an excerpt
of the piano piece Fiir Alina (1976). The piece is composed around the
B minor tintinabulli triad, and the tonal center of B is reinforced by a
low pedal note not shown in this excerpt. The right hand plays the m-
voice, and the left hand plays the T-voice in the same rhythm, using only
notes from the tintinnabuli triad. The relation between the two voices
is simple: the left hand plays the highest triad note below the melody,
but one octave lower. Pért deviates from this only once, when the T-voice
plays a C# (in bar 11; not shown). This special event is marked with a
flower in the original score. In other pieces, the T-voice consistently picks
the second triad note above the melody or alternates the one above and
below it. Hillier (1997) called such configurations tintinnabuli positions. As
illustrated in Figure 10.2, he distinguishes two superior and two inferior
positions, which use triad notes above and below the M-voice respectively.
Tintinnabuli positions do not change when transposing them octaves up
or down, and Fiir Alina therefore uses a T-voice in first position inferior.

The melody of Fiir Alina seems to be more freely composed than the
melodies in many of his other works. Still, it follows a numerical regularity:
every measure adds another quarter note until the pattern flips midway
and measures become shorter and shorter again. We find an even more
systematic melody in Fratres (1977).# The piece is built around an A minor
tintinnabuli triad and has two M-voices moving in parallel tenths. Itis
unusually dissonant, as the melodies move along a D harmonic minor
scale, which includes a C§ instead of the Ck from the triad. Figure 10.3
illustrates the backbone of Fratres: nine variations on a six-measure theme,
with each variation lowering the pitch center by another third. In the first
half of the theme, the melody moves down from the pitch center, and then
approaches it from above, moving one step further every bar. The second
half of the theme repeats the first half retrogradely. This results in four
types of melodic movement that Hillier (1997) also frequently encountered
in other works of Part. Figure 10.4 summarizes these four melodic modes:
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FIGURE 10.3 — The melodic structure of Fratres is a series of variations of a six-bar theme.
The first two variations are shown. The theme leaves and then approaches a pitch center,
moving one step further for three consecutive bars. The next three bars repeat the first
three, but are played backward. This results in four types of melodic movement, or modes,
that are often used by Part to compose M-voices. The first staff also shows the parallel
M-voice and the T-voice as small notes.
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FIGURE 10.4 — Four melodic modes commonly used by Arvo Pirt to construct m-voices. Two
modes move away from a central pitch, and two approach it (Hillier,1997). All of these are
found in Fratres, as shown in Figure 10.3.

moving (1) up or (2) down from a central pitch, or moving (3) down or (4)
up towards it.

The context in which Arvo Part developed his tintinnabuli style, and
its broader interpretation, has been discussed extensively in the scholarly
literature (see e.g., Bouteneff et al., 2021; Hillier, 1989; Shenton, 2012). It
emerged during a period of seven years in which he studied early music,
from plainchant to Palestrina, after his earlier serialist style had come
to a creative halt. Musically, as Hillier (19977) also explains, tintinnabuli
contains elements from early polyphony, functional harmony, and seri-
alism. The stepwise motion in the M-voice is for example reminiscent of
plainchant, and the homophonic texture it forms with the T-voice can be
compared to early polyphonic chant settings. The tintinnabuli style also
returns to a form of tonality, but not a functional one. While the hallmark
of function harmony, the triad, is omnipresent in tintinnabuli, it has been
stripped of its functional role. It is remarkable how Part managed to fuse
all these different ideas into a musical style that appeals to audiences
around the world.
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FIGURE10.5—The opening
measures of Summa. The
piece is a setting of the Credo,
consisting of 16 three-bar
sections with 7,9, and 7 sylla-
bles. The voice distribution
is mirrored in every section:
SA—SATB—TB. The alto and
bass have the m-voices, the
soprano and tenor the cor-
responding T-voices. If one
skips the small, slurred orna-
ments, the M-voices walk up
and down an E natural minor
scale, while the T-voices are
constrained to the E minor
triad.

10.3 Analysis

We now turn to Summa, of which several analyses have been published
before. The first,5 de la Motte-Haber (1996), preceded Hillier’s monograph
on Part and misses some key points: it focuses on T-voices rather than
the M-voices and discusses the version for string quartet, in which one
cannot see how Summa is structured around the text of the Credo, the
Christian statement of belief. Hillier (1997) points out that syllables in
fact form the ‘units’ of the piece and goes on to reveal the structure of
the M-voices. But their relation to the T-voices remains unclear: although
their overall contours correspond, he writes that the “note-to-note logic
of the T-voice is, exceptionally, self-contained” (p. 112). In an even more
extensive analysis, Patrick (2011) does not resolve this issue either. The
explanation I will propose below indeed moves beyond a note-to-note
logic and describes the T-voices as tintinnabuli processes that also depend
on previous notes in the M- and T-voices.

Butlet’s start at the beginning. Hoping to make the text more accessible,
I first present an analysis and then a formalization, even though the two
developed in tandem and often overlap.

TEXT AND STRUCTURE ~ Figure 10.5 shows the opening bars of Summa in the
version for mixed choir, which I analyze here.® The first thing that stands
out is the overall organization. Summa is divided in 16 sections spanning
three measures each. The first and final bars of a section are sung by
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the highest (sa) or lowest (TB) two voices, the middle bar is tutti, and
this pattern is mirrored in the next section. The organization becomes
transparent when observing that syllables are the unit of time. The Credo
consists of 366 syllables, which Part evenly distributed over the 16 sections.
Each section contains 23 syllables, divided over three measures of 7, 9 and
7 syllables respectively (see supplement £1). That amounts to a total of
368 syllables, two more than found in the Credo. The final two bars are
composed slightly more freely to compensate for this, but as a result break
some of the regularities seen in the rest of the score (see supplement E6).

The text setting is homophonic and largely syllabic: most syllables are
sung on a single note, some on two notes. Part always slurred those two
notes, and we can think of the second one as an ornament or passing note
(cf. Hillier, 1997). This distinction between ordinary notes and ornaments
will be important. The text setting is “fortuitous” (Hillier, 1997) insofar
thatitis dictated by the numerical patterns that Part laid out, not by the
textitself. This can be seen in the second bar, where the alto and soprano
end without ever finishing the word “factorem”. The phrasal structure of
the text is maintained in the music and indicated by commas, but these do
usually not overlap with bar lines. A notable exception, as Hillier (1997)
points out, is the very first phrase: “Credo in unum Deum.” Its seven
syllables may well have inspired the larger structure.

MELODICVOICES ~ Summa has two melodic voices: the alto and the bass. The
opening bar makes clear that the soprano is the T-voice for the alto, and
that the tenor forms a pair with the bass. Both T-voices only sing notes
from an E minor triad, and the M-voices only use the E natural minor
scale, making Summa completely diatonic. The E natural minor scale
also forms the backbone of the m-voices. To visualize this, Figure 10.6
plots only the notes of the alto and bass, and ignores ornaments and note
durations.” The blue line highlights that the alto is basically walking up
and down the E natural minor scale. The bass exactly mirrors the alto,
but has rests in different places. Closer inspection shows that the alto is
repeating a fifteen-note pattern, which is interrupted by bars of silence
and a return to the tonic whenever it enters, or when a new section starts.
As a section contains sixteen syllables, the fifteen-note pattern starts at
a different point in every section: it is shifted one step to the left. And so
one can alternatively describe the alto as follows: every section starts with
the tonic, followed by the pattern, but rotated one more step to the left
(cf. Hillier, 1997; Patrick, 2011). Both accounts have the same result, and
explain the feeling that the piece could continue forever, were it not for
the final two bars.

TINTINNABULI VoIcES  The tintinnabuli voices in Summa have probably
puzzled scholars most, even when they have ignored ornaments. Their
relation to the M-voices is not as direct as in Fiir Alina or Fratres, where the
T-voice consistently takes a fixed tintinnabuli position. For example, while
the first C, of the alto is paired with a B, in the soprano, the third time
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@» alto @ bass ® note repeated or rotated pattern

FIGURE 10.6 — The melodic
voices each repeat a 15-note
pattern that walks up and
down ascale. Diatonic pitch
is shown vertically and time
horizontally, measured in syl-
lables. The notes are shown
as dots and ornaments have
been omitted. The repe-
titions of the underlying
15-note pattern are shown

in the background. In every
section (marked by rehearsal
numbers), a voice sings the
tonic (E) followed by this
pattern, but rotated one step
to the left.

we encounter the C, in bar g5, the soprano sings a G,. Both Hillier (1997)
and Patrick (2011) conclude that the T-voices only resemble the shapes
of the M-voices, but are not predictably related to it. The T-voices indeed
cycle through a 30-note pattern that is similarly shaped as the M-voices
but with slight variations in each repetition. Still, there appears to be an
underlying logic. To identify it, I overlaid all repetitions of this 30-note
pattern and worked out an approximate pattern that best approximates
all of the repetitions (see supplement E2). Except for a few notes, the
approximation will thus be the same as each individual repetition in the
score.

Figure 10.7 shows the approximate patterns and reveals the constraints
that determine the T-voices. First, the soprano is at least two triad notes
above the alto and the tenor atleast one triad note above the bass. Second,
the T-voices only move step-wise to neighboring triad notes (repetitions
are not allowed). It turns out that one obtains the T-voices by picking
the lowest note satisfying these constraints at every time step. This also
explains some of the slight variations mentioned above: these are caused
by the melody voice jumping back to the tonic. And so the T-voices are not
in a fixed position but appear to be determined by a process that depends
on the current melody note and the previous tintinabulli note.
ORNAMENTs Piarthasadded ornamental notes to both the M- and T-voices.
They are always triad notes, which suggests that we can think of the
ornaments as tintinnabuli voices themselves. The approximate patterns
in Figure 10.7 show that ornaments are not randomly inserted, but the
underlying pattern is hard to pin down. For the soprano and tenor we see
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that ornaments only occur when the melody moves in the same direction
for more than two steps, and the ornament reverses the direction. I see no
obvious correspondence between ornaments in the alto and bass pattern.
In particular, they are not mirrored, but they do use the same ornaments
(E and B) when passing the G and C on the way up. That means that
for the alto and bass ornaments, the approximate patterns are the best
description we currently have.

RHYTHM  Finally, the rhythm in Summa is determined by two constraints:
first, that syllables start together in all voices (homophony), and second,
that melody notes have the duration of atleast a quarter note. Thisimplies
that if the alto has an ornament where the bass does not, the bass note
needs to be twice as long, and vice versa. If a T-voice has two notes where
the melody has one quarter, the T-voice has to half both of its notes. These
rules are consistently applied throughout the piece, except the penulti-
mate bar, where the bass and tenor start the “Amen” before the alto and
soprano.

10.4 Synthesis

We now formalize the construction of Summa laid out above, so that we
can implement an algorithm to reconstruct the score. Our formalism
takes inspiration from Roeder (2011) by distinguishing an M- and a T-
space in which the M- and T-voices live. The framework of Roeder (2011)
is so general that it even allows for the possibility that the spaces contain
objects other than pitch classes. That does not help us here: we need to
generate specific pitches, and even pitch classes would be too general.
Our formalization therefore starts in a larger pitch space . that con-
tains all semitones between, say, C, and Cg, which are naturally ordered
(e.g., G, < A;). If we call a subset S that spans no more than an octave a
scale, we can generate a scalar pitch space (S): the pitches (in #) with the
same pitch class as elements in the scale. In this way, we let the E-natural
minor scale generate the M-space ., in which the Mm-voices can move
around. The T-voices live in the T-space J, which is generated by the E
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FIGURE 10.7 — Approximate
patterns for all voices. These
patterns of notes (-) and
ornaments (+), when re-
peated throughout the piece,
approximate the melodies
of each of the voices. The
approximate patterns were
constructed manually by
comparing all repetitions,
so as to make the approxi-
mation as good as possible
(see supplemente2). For
the T-voices, they however
remain approximations: they
are better understood as
functions of the M-voices
(Figure10.8), not as repeti-
tions of the patterns shown
here.



minor triad—also a scale under this definition. In short,

M = (E5,F¥,G3, A4, B3, Cy, D) (10.1)
J = (E;, G3, B;). (10.2)

Both spaces are subsets of ./, and 7 is moreover a subset of .#. But the
latter need not be the case: in Fratres the triad falls outside of m-space
because of the Cl (Figure 10.3).

MELODICVOICES We can construct the basic pattern sung by the alto by
concatenating fragments of the four melodic modes, or by simply listing
its pitches:

o« = (E,,D,,Cy, B3, A3, Gy, FY, Gy, A, BS, Cy, Dy, By FY G FF). (10.3)

The alto sings this 16-note pattern 16 times, but every time rotates the
tail of the pattern one step to the left: everything after the first note. For
asequence x = (x,...,xy), let Rotate(x,d) = (*i_y modn -2 = 1, .., N)
be its rotation by distance d. Then the tail rotation by distance d can be
defined as TailRotation(x,d) = (x;)  Rotate((x,, ..., xy), d), where the
cup “_” indicates concatenation. And so

alto = TailRotation(a,0) _ ... _ TailRotation(c,15) (10.4)

gives all notes of the alto. The bass mirrors this. Let mirror ,(n,c) be
the mirror image of n with respect to c: the pitch which is equally many
steps (in /) apart from c as n is, but in the other direction. Then write
transpose , (1, d) for the transposition of note n by d steps. If both these
operations work entry-wise on sequences,

bass = transpose , (mirror ,(alto, E,), —6). (10.5)

TINTINNABULI PROCESSES  The central concept in tintinnabuli musicis ar-
guably the tintinnabuli position. Different from Hillier (1997), it will be
convenient not to treat positions in octaves as equivalent. Instead, we
denote the tintinnabuli note in p-th position above a given note nby T,,(n),
and the one below it by T_P(n), and allow p to be any integer. For example,
in our case T,(A;) = E, since this is the second triad note above A,, and
T_,(A;) = E;. One way to define the function T),, is as follows:

To(n)=n (10.6)
T,(n) =min{t € 7: ¢t > T,_,(n)} (10.7)
T_,(n)=max{t € T: t <T_¢,_ ()} (10.8)

This definition is recursive: we think of T,(n) as the first tintinnabuli note
above T,(n), thatis, as T;(T,(n)). The function is defined on all of .#, but
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A. Constant process B. Alternating process C. Step process

—e— melody process position p:  —m— 1 - -1 2 -2

we are most interested in the case when the position p is nonzero, and T,
maps/ltoJ.

As we have seen, the tintinnabuli voices in Summa are not solely de-
termined by the current melody note, but also by previous notes. The
same is true for Hillier’s alternating position (Figure 10.2). Because of the
sequential dependency, I would propose to speak of a “process” instead
of a “position” in such cases. To define this formally, consider a sequence
of melody pitches my, ..., my in J. A tintinnabuli process X determines a
corresponding sequence of tintinnabuli notes ¢, ... , t; in I via

b= X((ts e s i), (my, .o my)), i=2,...,K. (10.9)

Such a process can thus depend on all notes in the melody, past and future,
but only on previous notes in the tintinnabuli voice. Of course, we do need
to specify the starting point ¢;, or else the process cannot start.

The simplest example of a tintinabulli process is one that always returns
the same tintinabulli position (Figure 10.84),

Constant,(m;) = T,(m;). (10.10)

This shows that a position is a special case of a process. A second example
would be Hillier’s alternating position. Let P,,(t) denote the position of ¢
with respect to note m, thatis, the position p such that the p-th tintinnabuli
note of mis t, or T,,(m) = t. Then the alternating process is

Alternate(m;, m;_y, t;_;) = T_, (m;), wherep; =P, _(t), (10.11)

which basically flips the sign of the starting position (see Figure 10.88).

The tintinnabuli voices in Summa are determined by a more intricate
process that ensures the voices always satisfy two constraints. At every
point, ¢; has to be (1) atleast in position p above the melody note m;, and (2)
one step in the triad apart from the previous note ¢;_;. And so the process
moves stepwise through T-space while staying at least in position p. This
stepwise tintinnabuli process in position p can be defined as

T_y(t;—,) ifthisis > T,(m;)

] forp > 0. (10.12)
T,,(t;—;) otherwise

Stepp(mi’ tioy) =
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FIGURE10.8 —Three
tintinnabuli processes

for a melody that walks up
and down ascale. The con-
stant process (A) remainsin
the same tintinnabuli posi-
tion p, while the alternating
process (B) flips the sign of
the starting position every
step. The step process (c)
only moves to neighboring
triad notes, while keeping
adistance of at least p triad
notes from the melody. This
is the process used in Summa.



This process will satisfy both constraints for a stepwise melody as long
as the starting point ¢, is at least in position p. Although this would also
be defined for p < 0, it seems more appropriate to flip the definition for
p<o:

Step (my 1) = {Tﬂ(ti_l) if thisis < T,(m;4,) ’ forp < 0,
P T_,(t;_;) otherwise

(10.13)

This resulting process is illustrated in Figure 10.8c.

ORNAMENTATION  As the ornaments are always triad notes, we can think of
the ornaments as T-voices, but ones that can also be silent (no ornament),
besides singing (an ornament). This translates into a hierarchy of T-voices:
the tenor ornaments form a T-voice for the tenor, which is a T-voice for the
bass. We define a tintinnabuli process that generates the ornaments for
both the soprano and the tenor (see supplement g3). The process returns
the previous melody note if it does not equal the next melody note (the m-
and T-spaces are identical), and while it remains within certain bounds:

whenm;y, #m;_,,
m;_;, andb<m;_;<B
andc<m;,; <C

silent otherwise.

RepeatPreVlousb’B’c,c(mi_l, Miy) =

(10.14)

Without the bounds, the process cannot avoid ornaments at the extremes
of the range (e.g., G; or B, for the soprano), and one can imagine why
Part might have wanted to avoid those. Although it remains a question
whether Part actually thought of the ornamentation in this way, the reuse
of formal machinery seems appealing.

Finally, the alto and bass have ornaments at fairly regular positions
along the 16-note melodic pattern. We therefore define a process that
repeats a fixed sequence of ornamental pitches x, which can also contain
silences. Since the melodic pattern is repeated with a tail rotation, we also
need to rotate x to keep it aligned:

TailRotatedPattern, (m;) = 7; o4 x> (10.15)

where r = TailRotation(x, floor(i/|x|). The pattern of ornaments we use
is illustrated in Figure 10.7 (and in supplement E4).

IMPLEMENTATION To summarize, our formalism describes the notes of the
alto as a tail-rotated pattern and the bass as its mirror image. The soprano
and tenor are stepwise tintinnabuli processes in second and first position
respectively. Ornaments are also described as tintinnabuli processes. We
can then insert the notes and ornaments into the measure structure dis-
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A. Types of errors in the reconstruction

B. Error frequencies
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cussed in the previous section, and determine the note duration. For the
latter, we first assign every syllable a duration: 2 if either the alto or the
bass has an ornament, and 1 otherwise. Then we evenly distribute the
available time over the notes of a voice. I implemented all this in Python
using the computational musicology package music21 (Cuthbert & Ariza,
2010). The codebase, named tintinnabulipy, provides a convenient inter-
face for plotting and working with T- and m-spaces. It implements all of
the tintinnabuli processes described here but is also general enough to
be useful for analyses of other compositions by Part. Most importantly,
it allowed me to generate almost all melodic material of Summa in just a
few lines of code (see supplement Eg).

10.5 Evaluation

How much of the original composition is reproduced by our algorithm?
Figure 10.9A compares the first bar of the original score with the algorith-
mic reconstruction. The reconstruction contains four mismatches—I will
call these errors for simplicity—in the second and third syllable, which have
been colored according to their type. First, we see an ornament insertion
in the third note of the reconstructed alto part: the reconstruction has
an ornament, but the original does not. Conversely, an ornament deletion
occurs when the original is ornamented, but the reconstruction is not,
as with the fourth note in the alto. We also see several duration errors:
the second note of the soprano for example has double the duration of
the original. Finally, pitch errors occur when a note has the wrong pitch,
but these do not appear in this excerpt. I automated this evaluation to
systematically compare the reconstructed score with the original score,
part by part and syllable by syllable.®

The reconstructed score contains 1288 notes, of which 106 (8%) have
one or more errors. Most errors only concern the note duration (60 notes
or 56%), but we also find 2 pitch errors, 15 ornament deletions, and 34
insertions, eight of which are in the final two bars. These results show
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FIGURE 10.9 — Evaluation of
the algorithmic reconstruc-
tion. Thisisillustrated in
(A) by comparing the first
bar (bottom staves) with
the original (top staves).
We encounter four types

of reconstruction errors:
ornament insertions (red),
ornament deletions (blue),
duration errors (green) and
pitch errors (not shown). In
total we find 86 errors (6.7%)
after adjusting ornamented
exits (B). Over half of these
are duration errors, resulting
from ornament insertions
ordeletions. And soonly 43
ornaments and two pitches
need to be corrected (3.5%)
to reproduce the original
score.



that our algorithmic reconstruction is fairly successful: it correctly repro-
duces well over 9o% of the notes in Summa. And this statistic arguably
underestimates the performance, since all duration errors are explained
by ornament insertions or deletions. If the alto for example misses an
ornament, this causes the corresponding soprano note to be too short.
And so fixing insertion and deletion errors will automatically resolve all
duration errors. That means that only 51 notes (4%) in the reconstruc-
tion really need to be corrected in order to reproduce the original score
faithfully.

The remaining errors however reveal another plausible regularity. In
the reconstruction, one finds several ornaments right before a voice exits
to be silent for some measures, whereas ornamented exits are not found in
the original score. Removing all ornamented exits resolves six insertions
and consequently also reduces the number of duration errors, leaving a
total of 86 errors (7%). Of these, 45 (3.5%) are not duration errors and
need to be corrected. The alto needs the most correction (19 notes) and
is around twice as inaccurate as the soprano, tenor, and bass (10, 7, and
9). This is also summarised in Figure 10.9B. Taking into account that
eight errors occur in the final bars, and many other errors remain in the
ornamentation, the reconstruction seems very accurate and underscores
just how meticulously Part constructed Summa.

10.6 Discussion and conclusion

Arvo Pirt is known for his unique compositional style, tintinnabuli, which
has often been described as algorithmic. To assess how algorithmic Part’s
tintinnabular music is, this study has attempted to reconstruct one piece,
Summa, algorithmically. After analyzing and formalizing the piece, I ar-
rived at an implementation that reconstructed most of the original score,
showing that atleast 93% of the notes in Summa can be plausibly explained
by an algorithm. Most of the errors, moreover, are faulty note durations
caused by insertions or deletions of ornaments in other voices. Correct-
ing these ornamental errors would also resolve the duration errors. This
means that only 3,5% of the notes have to be corrected to retrieve the orig-
inal score, and demonstrates that Arvo Pért approached the composition
of Summa extremely systematically.

One might wonder whether the algorithm that I proposed also de-
scribes the compositional process: were these the procedures Part fol-
lowed? That may seem plausible, but only the composer can answer that
question and Part is unlikely to do so.? If my analysis is mistaken, the
mistakes are probably in the description of the ornamentation, where we
found the most errors. However, we should also consider that the com-
poser may have decided to adjust some of the ornaments and that there
are no further regularities to be found. After all, multiple corrections of the
score have been published. Although I have not been able to compare all
editions, some differences in ornamentation can also be heard in record-
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ings.’® These corrections also leave open the curious possibility that the
composer has made ‘mistakes’ when applying his set of rules. Doing so by
hand, rather than by computer, is far from straightforward and would be
comparable to a composer from earlier days making an occasional mistake
in voice leading.

While analyzing Summa, 1 developed some novel formal machinery.
Most notably, I proposed tintinnabuli processes to describe how a T-voice
can be produced from an M-voice while relying on parts of the melody
other than the current melody note. This turned out to be a fruitful gener-
alization of Hillier’s tintinnabuli positions. I expect other analyses will
also benefit from this concept—as they will from formalization more gen-
erally: the intricacies of works like Summa are arguably best described
in a formal language. This study demonstrates that it can be useful to
also implement that formalism, and I hope the resulting codebase will
contribute to further formal and computational analyses of Part’s work.

The methodology this study proposed for that, analysis by synthesis, is
best suited for understanding algorithmic music: it essentially tries to
recover the rules that generated a piece. But it could have wider applica-
bility. Strictly speaking, any piece can be algorithmically reconstructed by
simply enumerating all notes in the score. The more rules a piece satisfies,
the more concise the description can be. Algorithmic music is an extreme
case, but other types of music also follow rules. It may well be possible to
for example recover fragments of the middle voices in a Bach chorale from
the melody, a figured bass, and voice-leading rules.

That is not to say that algorithmic reconstruction should replace other
forms of scholarship. This study has deliberately disregarded all matters
of interpretation, which are of course central to understanding the music
of Partin a broader sense. For that, a methodology like analysis by syn-
thesis seems less useful. But when it comes to understanding how Arvo
Part’s tintinnabular compositions work, this study may provide a fruitful
starting point.

Notes

1 Thisis based on data released by Bachtrack, a classical music website that tracks many
thousands of concerts every year. The website annually releases statistics about concert
performances, including the most performed classical composer. In the year 2018 (bachtr
ack.com/classical-music-statistics-2018), these statistics were based on almost 20.000
concerts, in which Part was the top contemporary composers, as he had been since 2011 (see
bachtrack.com/classical-music-statistics-2017). In 2019, John Williams came out first, with
Part second.

2 | found two conference papers that use small fragments of Part’'s compositions as exam-
plesinalive coding setting (Bertram, 2014; Ruthmann et al., 2010). Krimer (2015) cites a
script by Christopher Ariza and Michael Scott Cuthbert that generates a score for Part’s Pari
Intervallo, which can indeed be found in an old release of music21: github.com/changtailia
ng/music21/blob/master/music21/composition/phasing.py. David Cope appears to have
discussed Cantus in Memoriam Benjamin Britten in a course on computer-assisted composition
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in 2008. De Paiva Santana and Bresson (2012) presented a poster that modelled Spiegel im
Spiegel in OpenMusic (see also Shvets & De Paiva Santana, 2014). Outside the academic
literature, Guy Birkin in 2015 released the album Tintinnabuli Mathematica vol. | with music
generated in Mathematica using tintinnabuli rules and number sequences. He explains the
process in a blog post available at aestheticcomplexity.wordpress.com/2011/11/11/program
ming-arvo-part.

3 My translation. Itisinstructive to read his comment in full:

Ich habe groRe Schwierigkeiten, wenn ich meine Werke kommentieren
soll.

Ich bin dafiir, daf zwischen Wort und Musik ein besonders behutsames
Verhdltnis sein mufR. Wir missen der Musik eine Chance geben, sich allein
auszudricken. Worter treiben die Musik in die Enge. Und auch die Musik
neigt dazu, sich von Wértern abhangig zu machen. Ich sehe in dieser
»iiberkommunizierten« Gesellschaft Cefahr fiir die Existenz der Musik.

Ich muf in mir Raum frei lassen fiir Musik, und wenn dieser Raum mit
Worten besetzt wird, bleibt mir kein Bedurfnis, mich mit Musik auszu-
driicken — und umgekehrt: wenn ich ein Musikwerk geschrieben habe,
bleibt nichts mehr mit Worten zu sagen tbrig.

*x kK

Ich habe ein hochformalisiertes Kompositionssystem entwickelt, in dem
ich seit 20 Jahren meine Musik schreibe. In dieser Reihe ist Summa das
strengstgebaute und verschliisselste Werk. Die Verschliisselungen finden
sich in vielen Schichten der Partitur.

(Berlin, den 15.6.1994)

4 Thisanalysis is based on the 1980 version for violin and piano.

5 Shenton (2012) also cites the masters thesis by Kosak (1994), which | have however not
been able to find.

6 UE33686, Korr. I11/2012, to be precise.

7 Asthe piece is diatonic we only have to represent pitches in the E natural minor scale.
That means we let E, correspond to o, F’; to1,G, to2,and soon.

8 Toobtainadigital versionofthe original score, I transcribed my physical copy in MuseScore.
I manually compared all errors identified in reconstruction against the physical score, and
this allowed me to resolve some transcription mistakes.

9 Inthe comments that are reproduced in footnote 3, Part expresses his “great difficulty” in
commenting on his own works as he wants to give the music a chance to express itself.

10 To givejustone example, in measure 12 the score used in this study ornaments 've-'in
‘verum’ with an E, in the alto, while the recording by the Hilliard Ensemble (1987) singsa G,,
as does the more recent recording by Vox Clamantis (2016).
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SUPPLEMENTARY MATERIALS E1 Textual structure of Summa - E2 Approximate patterns
- E3 Tenor and soprano ornaments - E4 Altoand bass ornaments - E5 Implementation:
code sample - E6 Ending of Summa
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usic exemplifies the richness and diversity of human

life, I wrote in the opening of this dissertation. In the

chapters that followed, I have looked for ways to for-

mally understand and measure some of that richness.

By slicing chants into natural units, I tried to capture
melodic modes in plainchant. Like the sounds that carry music, the shapes
of melodies turn out to be best described as a combination of waves, in
this case, cosine functions. But those shapes, when it concerns phrases,
can vary almost smoothly and do come in clear categories. This search
for categories, or statistical modes, became a recurrent theme. Ilooked
for modes in contours, in plainchant, but also in the rthythm of Malian
jembe music or the vocalizations of lemurs. And just as small motifs re-
veal regularities in those rhythms, small motifs reveal regularities in the
movement of the melodies. But rarely is that movement as regular, are
the musical shapes as clear, as in the hands of Arvo Part, whose musicis a
treasure trove of formal musical structures.

11.1 Contributions

Let me unpack all this and list the contributions in this dissertation.

CORPORAANDSOFTWARE  Thefirstline of research laid the technical ground-
work: corpora, parsers, and other software. I released two chant corpora,
Cantus Corpus and GregoBase Corpus. Both repackage existing corpora
in a way that makes them more suitable for computational research. With
the same goal in mind, I developed the Python library chant21 that im-
proves support for two chant formats in music21: Volpiano and gabc. I
proposed parsing expression grammars for both gabc and Volpiano, and
used these to build a hierarchical representation of the chant, segmenting
it into neumes, syllables, words, and sections. Besides chant corpora, I



proposed a way to index folk music corpora in a proof-of-concept project
named Catafolk.

cHANT AND MODEs  The second line of research investigates plainchant
and its modes in particular. I proposed a distributional approach to
mode classification in Medieval plainchant using tf—idf vectors, which
outperformed two other approaches. The distributional approach still per-
formed reasonably well using a contour representation that was stripped
of almost all pitch information, demonstrating that mode is more than
scale. Crucially, this worked only when segmenting the chant in its natu-
ral units: groups of notes corresponding to syllables or words in the text.
This is consistent with the idea that chant is composed by centonization,
a process in which existing chunks of music are recombined to form new
chants.

To better understand the classifier, I introduced a simple attribution
method, witness coloring, that highlights which motifs contribute to the
classification. For antiphons, this method consistently highlights differ-
entiae, the psalm endings sung before repeating the antiphon that frames
it. Using an entropy measure, I furthermore showed that differentiae-
antiphon connections are more predictable in some modes than oth-
ers and that differentiae are more predictable than antiphons. Finally,
I trained a recurrent neural language model on plainchant, capable of
generating chant. The neural chant model learns rich musical represen-
tations. It for example appears to represent pitch information without
being explicitly trained to do so, and even when trained on interval repre-
sentations. I also suggest that the statistical modes in the learned chant
space may correspond to mode-genre combinations.

MELODIC cONTOUR  The third line of research focused on the analysis of
melodic contour. In a first case study, I confirmed the melodic arch hy-
pothesis in plainchant, by comparing phrases to a novel baseline of ran-
dom melodic segments. This eventually led to the observation that prin-
cipal components of melodies approximate cosines. Explaining this by
a particular covariance structure observed in this data, motivated cosine
contours, a novel contour representation that uses the discrete cosine
transform. Turning to the typology of melodic contour, the umar-dip
test could discriminate clustered from unclustered synthetic contours
but failed to find any evidence for clustering in actual phrases. In other
words, phrase contours do not appear to cluster. Further identifying a
hidden tolerance parameter in Huron’s typology, lead me to argue for a
continuous view of contour.

moTiFs A fourth line of research concerned musical motifs: small frag-
ments of melodies or rhythms. When classifying modes in plainchant,
using the right segmentation of the chant turned out to be key, and sug-
gested that the units of plainchant are motifs based on the text. Fixed-
length motifs nevertheless prove useful, for example when visualizing
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rhythm. After identifying some problems in raster plots, I propose ways
to visualize inter-onset interval data using rhythm triangles. I use these
to reanalyze rhythms in music and in vocalizations of a range of species.
Thinking in terms of motifs also led to a measure of isochrony that extends
the nPVI. Inspired by rhythmic motifs, I visualized the occurrence of short
melodic motifs in melody squares, which motivated several cross-cultural
generalizations.

ALGORITHMICMUsIC  Finally, I presented a algorithmic reconstruction of
Arvo Part’s Summa that almost completely reproduces the original score.
Itis a case study in analysis-by-synthesis, that resulted in new formal ma-
chinery, tintinnabuli processes, and software, that can help to formally
understand the music of Part. Although this music may deserve the label
algorithmic, it is of a very different nature than the plainchant generated
algorithmically using the neural chant model.

11.2 Discussion and future directions

Returning to the very first chapter, I motivated this dissertation against
an evolutionary backdrop: why did humans evolve to become musical
animals? What abilities allow humans to produce and perceive music, and
what is their evolutionary history? To pinpoint those abilities, we need to
understand what forms musics can take. Analogous to a multi-component
perspective on musicality, this requires a typological perspective on mu-
sics. When it concerns musicin a narrow sense—formal aspects of musical
behavior, such as the information contained in musical scores—it makes
sense to approach typology computationally: to measure musics.

Compared to the breadth of that original agenda, this dissertation takes
only some very small steps, as it only studied a few musical phenomena
(modes, contours, and motifs). The cross-cultural generality of the studies
is moreover rather limited: I have primarily analyzed folk music from the
Essen Folksong collection, plainchant (Cantus and GregoBase), and the
Densmore collection. As I have noted in chapter 2, the ideal would be a
representative, global sample of music corpora. Collecting such a corpus, if
atall possible, would require collaboration at a much larger scale, in which
music researchers, as a community, would have to bring together their
resources—precisely what motivated the Catafolk project. Nevertheless,
this dissertation already suggests several interesting directions for future
work and I want to highlight a few of those.

This dissertation studied modality in Western plainchant only, and so
perhaps the most promising future work would be to extend this work
to other traditions. As mentioned in chapter 4, other studies have also
characterized modes motif-based models were also used to classify raga
or makam. This convergence of models in different musics, could be seen
as some sort of computational resolution to the problem of incommensu-
rability. If the modes in plainchant, raga, and makam can be described
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using the same computational model, the concepts become formally com-
parable, even if their musical meanings are not comparable. This deserves
further investigation.

A closely related question that deserves further study concerns the rela-
tionship between statistical modes in melody space and musical modes.
Chant representations produced by a recurrent neural network (chapter 5)
appeared to suggest that statistical modes in plainchant may correspond
to mode-genre pairs. This raises the question of whether modalities in
other traditions, such as ragas or makams, correspond to modes in some
melody space. If so, it could suggest an explanation for why multiple
musical traditions organize their repertoires around modes (Powers et
al., 2001). Perhaps a large enough repertoire will tend to be organized
in classes, corresponding to statistical modes in the melody space. Itis
conceivable that this is a by-product of learning melodic expectations
statistically. One might also wonder if there are common tendencies in
how those modes will be theoretically characterized, such as along the
lines of scales and contours.

Another promising line of research that this dissertation unfortunately
not touched upon, is the historical development of plainchant. With
manuscripts spanning several centuries, the Cantus database is a very
promising test bed for studying models of cultural evolution. What is
particularly promising is the variety of ‘phylogenetic signals’ that one
can find in the corpus. From the perspective of this dissertation, one
might think of deriving such a signal from the melodies themselves, by
measuring their melodic similarity. But even just the contents of the
manuscripts already provide an informative signal: which feasts do they
contain, and what chants are used for which particular feast? This can
be indicative for chant traditions, without even requiring any melodic
transcriptions.

Besides mode, contour was the second protagonist of this dissertation.
It seems likely that studies of intonation contours in language may profit
from our approach to melodic contour. Concretely, the melody development
model, suggests that the vocalizations of infants (not only their cries) also
gradually increase in complexity during the first six months of develop-
ment (as evidenced by an increasing number of arches in the f, contour)
and that this is an important step toward acquiring a language. In a vast
dataset of almost 70,000 vocalizations, Wermbke et al. (2021) find evidence
for a gradual increase in complexity. The study relies on a classification of
vocalization contours into either a simple or complex category. Using co-
sine contours seems like a promising alternative: as it describes a contour
as a combination of waves, vocalization complexity should quite naturally
translate into more energy in the higher-frequency components.

In that same spirit, the methods I developed to study the clusterability
of melodic contour, seem promising for studying prosody. One interest-
ing case concerns the ToBI system that uses a used to describe English
intonation contours (Silverman et al., 1992). Do the types of intonation
contours indeed correspond to clusters of contours? This is the exact same
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question I asked about musical phrase contours and may be addressed
using the dist-dip test.

Motifs were the third antagonist, be it in rather different ways. Our
work on mode classification highlighted the need to use variable-length
motifs, while fixed-length motifs proved informative in a more explorative
visualizations. In the case of rhythmic motifs, an interesting extension
would visualize the rhythms in vocalizations of various bird species us-
ing rhythm triangles. An obvious starting point would be Xeno-canto, a
vast collection of recordings of bird sounds from around the world. Itis
also where Roeske et al. (2020) got their nightingale recordings that were
visualized in chapter 7. A challenge, and in itself an important problem,
would be automatic onset detection, for which Roeske et al. (2020) may
offer a starting point.

11.3 Reflections

Iwould like to end on a personal note. Like most dissertations, this one did
not come together easily and also did not follow the path the first research
proposal laid out. This dissertation was originally intended to be about
the cultural evolution of language, not about music. Accordingly, I spent
the first year of my Ph.D. drafting a syllabus on the evolution of language
and music: a fascinating but perhaps too ambitious project. Nine months
and several chapters later my motivation had evaporated, and I decided
to quit.

In hindsight, my master’s, combined with too many other activities
must have left me nearly overworked before I even started my Ph.D. Choirs
offered a welcome escape, singing lessons soon became a form of therapy,
and by the end of the first year, I had taken up a study in classical voice
at Utrecht Conservatory. When I told my main supervisor, Jelle, that
had decided to exchange the university for the conservatory, he suggested
to also exchange language, my original research area, for music and com-
bine singing and science instead. This worked out surprisingly well. The
conservatory gave me energy, direction, and inspiration and formed a
productive counterweight to the intellectual work at university. When
a pandemic forced academics to work from home, conservatories would
soon open their doors again and offered another welcome escape.

But having ‘lost’ a year on a syllabus that never materialized and being
occupied by a conservatory study, the pressure to produce some sort of
academic output made me opportunistic. Not driven by a deeply felt
fascination and limited by practical constraints, I jumped on whatever
came along. Modes? Sure. Contours? Why not. Given the circumstances,
this was fine, but it fed my insecurities: my academic work felt rushed,
unguided, and shallow—even though others evidently disagreed.

Perhaps thisis why I could not forge a compelling overarching argument
out of my research when the time came to write things up. I instead
decided to focus on the interludes. Taking more liberty than scientific
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articles allow for, I enjoyed writing them, and finished a first version
of this dissertation in September 2022. The manuscript was somewhat
unpolished and unconventional, but finished. Only some five months
later, did I find the energy to start with the final corrections, to find thatI
now agreed with most of my supervisors’ earlier reservations. I have tried
to polish the dissertation, but I am well aware of the many imperfections
that remain. So be it—hora est.
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A1 Data and code

All data and code used in this study have been made available online (see the
end of page 44). All randomness in the code has been fixed, so it should in the-
ory be possible to reproduce our results exactly. The evaluation metrics of all
experiments are already included in the repository, as is the data used in the first
run of the experiment; this should be sufficient for reproducing most figures. We
have included model predictions and tuning results only for the first run of the
experiment. Detailed logs of everything from data generation to visualization can
also be in the repository, together with many more figures besides those included
in the paper and the supplements. In particular, the repository contains heatmaps
with multiple evaluation metrics (accuracy, precision, recall, and F;) for all models
and all experimental conditions.

A2 Filtering

As described in the main text, we filtered the total dataset of 497,071 chants to
obtain a clean subset of responsories and antiphons. The effects of all of the filters
are logged and will be made available online. As an example, below we show the
output of the series of filters applied to obtain the full set of antiphons used in this
study.



Exclude all chants with an empty volpiano field

> 87.20% removed (433443 out of 497071; 63628 remain)

Exclude all chants without notes

> 2.87% removed (1825 out of 63628; 61803 remain)

Include only chants with simple modes: 1-8, not transposed

> 23.02% removed (14227 out of 61803; 47576 remain)

> 20.65% removed (9823 out of 47576; 37753 remain)

Filter chants whose incipit is identical to the full text

> 14.59% removed (5507 out of 37753; 32246 remain)

Include only chants with a certain genre (here: antiphons)

> 52.06% removed (16787 out of 32246; 15459 remain)

Exclude chants that do not start with a G clef

> 0.05% removed (7 out of 15459; 15452 remain)

Exclude chants that contain an F clef

> 0.00% removed (0 out of 15452; 15452 remain)

Filter chants with missing pitches: containing the substring 6------ 6
> 7.54% removed (1165 out of 15452; 14287 remain)

Exclude all chants with non-volpiano characters

> 0.03% removed (5 out of 14287; 14282 remain)

Only include chants with '---' in their volpiano
> 0.08% removed (11 out of 14282; 14271 remain)

Filter duplicate chants: whose notes occur multiple times
> 2.84% removed (406 out of 14271; 13865 remain)

A3 Dataset statistics

The number of chants, their average length, and the number of notes for each
dataset. We sort datasets by genre, then by subset (include melody variants in the
full set, or exclude them in the subset), and finally by train/test split (or total for
the two combined). The train/test splits are differentin each run of the experiment.
These statistics are computed from the data used in the first run, and others are
comparable.

Genre Subset  Split  #chants  #notes  Mean length (notes)
responsory  full train 4922 676807 137.5
responsory  full test 2109 290064 137.5
responsory  full total 7031 966 871 137.5
responsory  subset train 1234 169642 137.5
responsory  subset  test 529 72504 1371
responsory  subset  total 1763 242146 137.3
antiphon full train 9706 576738 59.4
antiphon full test 4159 248405 59.7
antiphon full total 13 865 825143 59.5
antiphon subset  train 29M 190165 65.3
antiphon subset  test 1248 82781 66.3
antiphon subset  total 4159 272946 65.6

A4 Majority baselines

Below we show the frequency of the largest classes in each of the datasets. Bold-
faced values correspond to the classification accuracy of the worst-performing
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conditions discussed in the main text. (The frequencies are marginally different
in the five experimental runs; shown are the averages.)

genre dataset kind topmode  frequency
responsory  full train 8 20.85%
responsory  full test 8 21.13%
responsory  subset train 1 21.65%
responsory  subset test 1 20.19%
antiphon full train 8 28.47%
antiphon full test 8 28.13%
antiphon subset train 1 23.50%
antiphon subset test 1 24.18%

A5 Chantlengthsin two genres

Responsories are usually much longer than antiphons. The distribution is esti-
mated from the training datasets without melody variants:

0.015
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0.005 '/
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50

100

150

chant length (notes)
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300

A6 Mean lengths of natural units

Natural units have different lengths in responsories and antiphons, as the mean
lengths (in the number of notes) show. section a7 shows the full distribution.
Means are estimated from the training datasets without melody variants.

neume  syllable  word
antiphon 1.50 1.55 3.98
responsory  2.32 2.96 7.2
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A7 Lengths of natural units

Natural units have different lenghts in responsories and antiphons. Responsories
are more melismatic: they use more notes per syllable. As a result, a typical word is
also much longer. This is shown in the figure using violin plots, a visualization of
the length distribution using a kernel density estimate. Note that the total area
has no meaning in this plot; we normalized the widths of the violins for better
readability. The distributions are estimated from the training datasets without
melody variants).

2

responsory -
Q .
P unit
g B neume
[ syllable
antiphon - I word

length

A8 Pitch class profiles

The pitch class profiles used in the profile approach. Shown are data for respon-
sories, estimated from the training data without melody variants.
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A9 Repetition profiles

The repetition profiles that are used in the profile approach. Every bar shows the
average number of repetitions of that note in a chant (see main text for details).
Shown are data for responsories, estimated from the training data without melody

variants.
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A10 Melody variants in Cantus.

The top two panels show examples of sets of melody variants: the first 100 notes
of melodies sharing a Cantus 1p. Different colors correspond to different pitches,
or more precisely, different Volpiano characters after discarding dashes. As a
comparison, the bottom panel shows 100 notes of 20 random melodies.
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A11 Results with standard deviation

This is essentially the same figure as Figure 4.5 but now with the mean F,-score
w and its standard deviation o shown as u*?, computed from five independent
runs of the experiment.
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A12 Main results on subset

Cantus often contains several variants of the same melody, as shown in supple-
ment A10. As discussed in the main text, this is a difficult issue that for example
also applies to the Essen folk-song collection. We decided to repeat our experi-
ments on a subset of the data where we excluded melody variants. We heuristically
identified melody variants by randomly picking one chant from all sets of chants
that have the same Cantus 10 and mode. This resulted in a set of 1763 responsories
and 4159 antiphons. In terms of the number of notes, this meant a 75% and 66%
reduction in data size for responsories and antiphons respectively. This figure
shows the main classification results on this subset of the data. The performance
of all models decreases on this subset, and for responsories more than for an-
tiphons. The drop is greatest for responsories across models. The main result that
only natural units maintain high performance, even on contour representations,
nevertheless stand. Our main findings that contours are sufficient and that natural
units work best across representations stand. We do observe some reorderings:
some already high-performing n-grams in antiphons now for example slightly
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overtake word segmentations, although only for pitch and dependent interval
representations. The distributional approach works best for antiphons regardless
of including or excluding chant variants, but for responsories, the distributional
approach drops slightly below the classical approach on the subset (where the
profile approach is worst). These findings might be explained by increased sparsity
in the smaller dataset: natural units in responsories are, after all, longer.
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A Nonzero entries in tf-idf vector (running example)
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A13 Feature importance

Here we discuss the attribution method discussed in section 4.4 in more detail.
We restrict the discussion to the syllable segmentation in responsories. Besides
the svM-feature importance discussed in the main text, we also discuss using raw
tf—idf scores as a measure of feature importance. For each of these two measures,
we distinguish two variants: a class-specific and a general one. The class-specific
variant measures how important a feature is for determining whether a chant
belongs to one specific mode. The general variant measures the importance for
classifying to any class.

CLASS-SPECIFIC SVM-IMPORTANCE  This is the measure discussed in the main text, but
to understand it better, itis instructive to go through the projection of a tf-idf chant
vector on a decision axis in more detail. Letu(™ = (uy, ..., u,) be the decision
vector of mode m, orthogonal to the decision boundary, and letx = (x,, ... ,x,) be
the tf-idf feature vector of some chant. If u is normalized, the projection is given
by the inner product u”x = ux, + u,x, + -+ + u,x,. In practice, there are only a
few terms in this sum as terms for which x; is zero do not contribute to the total.
In a sparse tf—idf vector, there will be many such terms. In Figure A.1 we visually
illustrate this to highlight which motifs contribute to the projection—and the
eventual classification. Concretely, if the k-the entry u]Em) of decision axis u®™ has
a large value, the k-th motif contributes to classifying a chant to mode m. The
class-wise svM-importance of motif £ for mode m is:

(m)
3

svM-importance, (k) = u

(A)
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FIGURE A.1— Projection on
decision axes. (A) shows the
sorted, nonzero entries of
the the tf—idf vector, and (B)
the corresponding entries
of the decision vector. The
partial projection is shown
in (c). It highlights how
each feature contributes to
the final projections. The
solid red line for mode 7 for
example increases markedly
at the fifth and ninth motifs
(shown with musical scores).
Those motifs partly explain
why the chantis classified to
mode 7. The same chantas
in Figure 4.7 is shown.



FIGURE A.2—Top most im-
portant motifs according

to different general im-
portance measures. Sin-
gle notes stand out in the
pitch representation (A),
suggesting mostly scalar
information is encoded,
whereas the interval and
contour representation (B,
c) emphasise larger motifs,
encoding more melodicin-
formation. Tf-idf importance
seems to rank common,
short motifs higher, whereas
SVM importance appear to
favour motifs that discrimi-
nate modes. Lighter colours
indicate more important
features.
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GENERAL SVM-IMPORTANCE  Importance for any particular class indicates general
importance, and so the general measure is essentially an average of importance
scores. However, it takes into account counter-evidence. If coordinate k of a
decision vector is strongly negative, an occurrence of motif £ can be seen as strong
counter-evidence for mode m. The class-specific measure does not consider k to
be important for mode m, but the motif should have general importance. To ensure
that both strong evidence and strong counter-evidence indicate importance, the
general variant takes the mean of the absolute values:

svMm-importance(k) = average(|u£l)|, ey |u]E8)|). (A2)
CLASS-SPECIFIC TFIDF IMPORTANCE  Next, we experimented with using tf—idf scores
as measures of feature importance. To that end we simply computed average
scores across all chants of a particular mode:

tf—idf-importance (k) = average(x, : chant x has mode m) (A3)

GENERAL TF-IDF IMPORTANCE  The general variant is identical except that it now
averages over all chants:

tf-idf-importance(k) = average(x, : X is any chant) (A.q)

COMPARISON OF GENERAL IMPORTANCE MEASURES  First, Figure A.2 shows the top-
ranking items according to the general tf—idf and svMm importance measures. It
clearly stands out that the tf—idf scores emphasize short, relatively common motifs
across modes, whereas svM importance emphasizes larger motifs. This is also why
witness coloring using the svM scores seems more informative than using tf—idf
scores. Despite the differences in the top-ranking motifs, there is some correlation
between the two importance measures. This can be seen in Figure A.3 which plots
the svM-rankings against the tf-idf rankings.
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Finally, we assessed how classification performance is impacted by only using
the top-n features according to each of the importance measures. Figure A.4 shows
that pruning all except the top n features results in much higher performance than
a baseline that uses n randomly chosen features. The two importance measures
behave similarly in this pruning experiment, but for contour and interval repre-
sentations, the svM importance seems to produce better rankings than the tf—idf
importance. The figure also suggests that the classifier relies much more on the top
features, than it does for interval and contour representations, as the performance
increases very rapidly for the pitch representation when increasing #.

Pitch Contour Contour
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s 2k
> 2k 4
5 2% 2k
04 » 0 » o4 *
T T T T T T T T T
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FIGURE A.3 — Rank correlation of general feature importance measures. We compare tf—idf
and svm feature importance by looking at their rank correlation in three representations.
There seems to be some consistency in how these measures rank different motifs.
Pitch Independent interval Independent contour
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FIGURE A.4 — Pruned model performance. We compare measures of feature importance
by evaluating the classifier when eliminating all but the top-# features according to an
importance measure. Pruning the model based on the SVM importance measures seems
to impact performance less than using tf-id for the contour representation. Although the
differences are small in terms of model performance, the top-ranking motifs are noticeably
different. Data are for responsories using a syllable segmentation, thick lines are averages
over the five runs.
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A14 Witness coloring antiphons

We show six antiphons, three from mode 1 and three from mode 3. The coloring
shows which motifs (in interval representation) contribute to the classification.
The figure illustrates that the final sections, called differentiae, play an important
role. Not only are differentiae indicative of mode, but these motifs are also longer
than syllables in antiphons.
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B1 Random walk baseline

A. Poisson length distr. B. Binomial step distr.
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We compared the principal components of phrases to a random walk baseline
that was intended to be fairly similar to actual phrase contours. First, we draw the
length (number of notes) K of the random walk from a Poisson distribution with



mean A = 12 (truncated below 3). The value 12 was chosen so as to approximate the
length distribution of phrases. Then we draw an initial pitch x, uniformly between
60 and 85 (in MIDI pitch space). Next, at every step k we draw the size of a step 7,
(the interval) from a Binomial distribution with parameters n = 10 and p = 0.5,
shifted to have mean o, and let the next pitch be x, = x;_, + r,. We constrain
the step sizes to lie between —12 and 412, meaning that jumps cannot exceed an
octave. This results in small, approximately normally distributed step sizes. This
process yields a sequence of pitches x,, ..., x,_;. As usual, we interpolate a step
function through these pitches and sample N = 100 equally spaced pitches to
obtain a random contour. In the figure above we use N = 50 for readability.
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Here we vary the average length A of the random walk baseline. This affects
the number of notes K, but we still have N = 100 throughout. We generate
10,000 random contours, and compute the covariance matrices (A). The longer the
melodies (larger K), the more the covariance matrix starts to resemble a Toeplitz
matrix, which has constant values along each of its diagonals. As an ad-hoc
measure of Toeplitzness, we measure how much every entry of the covariance
matrix differs from the mean value on that diagonal. For a Toeplitz matrix, that
should be zero everywhere: all diagonals are constant, so every entry also equals
the mean of that diagonal. Column (B) makes clear that the covariance matrix
differs from a Toeplitz matrix mostly in the upper left corner, which contains
the covariance in the first timesteps. All this is also reflected in the principal
components (C).
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B2 Analyses of other datasets

In this supplement we visualize the principal components of melodic material from
motifs to songs in different traditions. We include a subset here, please refer to the
original supplements for the rest. That can be found on github.com/bacor/cosine-
contours/blob/master/documents/supplements.pdf Here we show the following
for every dataset:

A. The first four principal components. The first one is usually a flat line (gray),
the second a descending shape (blue), the third a convex shape (orange), and
the fourth one undulating (green). The corresponding cosines are shown as
thin dashed lines in the same colors.

B. Thelength distribution of the melodic material, where length is measured in
quarter notes. For Gregorian chant we assume all notes are quarter notes.

c. The covariance matrix.

D. Ascatterplot showing the representations of 2000 contours in 2d cosine con-
tour space.

E. The reconstruction error using the discrete cosine transform compared to a
principal component analysis.

Itis clear that the cosine approximation is most accurate at the phrase level. For
very short melodic fragments (such as neumes or syllables), you see clear effects
of the typical number of notes. For example, neumes often have only 2 notes,
meaning there is a jump in the middle of the contour. You can see this in the
principal components, but also in the covariance matrix. Such effects are weaker,
but sometimes still visible at the phrase level: German folksongs apparently often
have durations of 8 quarter notes, with jumps in the middle, or after 2 of 6 quarter
notes. For complete songs, finally, the principal components are often difficult
to interpret. Only for a very large number of songs (such as when combining
all chants in GregoBase) does a pattern reminiscent of the cosines emerge. But
for very small datasets, such as those in the Densmore collection, the principal
components are very irregular.
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Motifs

All motifs come from Gregorian chant (responsories from CantusCorpus).
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Phrases
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B3 Mathematical background

In this supplement we provide some more mathematical background to illustrate
why we observe cosine-shaped principal components. The aim is to make some of
the key points a bit more accessible; we refer to Jolliffe (2002) for a detailed discus-
sion of principal component analysis, to Gray (2006) for a rigorous treatment of
Toeplitz matrices and their limiting behaviour, and to Rao and Yip (1990) for the
discrete cosine transform.

NOTATION We write N for the length of a contour, or the number of steps in a ran-
dom walk, and M denotes the number of contours. Consider a dataset {x, ..., X,,}
of points x,, = (x,,,, ..., Xpy) in RY. We denote the sample mean by % and the
centered data points by X,,:

1
M
m

Mk

X= X, and X, =X, —X, (B.1)

and both of course live in RY. An M X N matrix X has entries (X),, , = %,,,, and for
N X N matrices we generally index rows by # and columns by k.

Principal components

MAXIMIZE PROJECTED VARIANCE The goal of a principal component analysis is to
find a subspace of lower dimensionality D < N that maximizes the variance of
the data when it is projected on this subspace. First, we project the data on a
one-dimensional subspace spanned by the unit vector u, € R". You can think of
the projection of X,, as a point in the N-dimensional ambient space, but we rather
treat it as the scalar ux,: the coordinate in the one-dimensional subspace. The
projected data then has mean ulx and variance

15, T5)? T
M z:(u1 X, —u/X) =u/Su, (B.2)
m=1

where S is the N X n covariance matrix given by

1

S=4;

Xy — i)(xm - i)T (B'3)

Mk

m

We want to choose u, in such a way that it maximizes the projected variance u Su,.
It can be shown (see e.g. Jolliffe, 2002), using a Lagrange multiplier, that under
the constraint ||u,|| = 1, the projected variance is maximized when

Su, = Au,. (B.4)
Left-multiplying by u”, and using that u’u, = 1, this is the case when
u'su =1, (B.5)

Equation (B.4) shows thatu, mustbe an eigenvector of the covariance matrix S cor-
responding to eigenvalue A, which is exactly the projected variance according to
(B.5). The first principal component, in short, is the eigenvector of the covariance
matrix corresponding to the largest eigenvalue. The argument can be extended
inductively to identify all principal components as eigenvectors of the covariance
matrix, ordered according to their eigenvalues.
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MINIMIZE RECONSTRUCTION ERROR It should be noted that one can also motivate
principal components in another way. Consider a dataset {x,, € R"},, as before,
and a set of basis vectors {u, ..., vy} for RY with norm 1. As before, the projection
of x on the u, is ¢, = u,x, and so we can represent x as a coordinate vector
(cgs --+ » cy)- Now suppose we only use the first D coordinates to represent X, so we
get the truncated representation:

D
X = Z cu;. (B.6)
i=1
Now measure the reconstruction error as
1 M
MSE = 5 Z(x — %) (B.7)
m=1

We ask: how should we choose the basis vectors so that the reconstruction er-
ror MSE is minimized? The answer is the same: as the eigenvectors, ranked in
descending order (Rao & Yip, 1990).

Toeplitz and circulant matrices

Toeplitz matrices are matrices were every diagonal has the same value. They are
usually indexed as follows:

oty ty e Eyop
6ty t
T=| ¢ [ : (B.8)
tyes t

That means that T;; = ¢;_;. Before we discuss Toeplitz matrices further, let’s focus
on the special subset of circulant matrices. A circulant matrix is a Toeplitz matrix
where every row equals the previous row, rotated one step to the right:

o G ) CN—1
-1 Go G CN—2
C C C
c=|%2 -1 % . (B.9)
€ G
G CN—1 €

It is convenient to start indexing at o rather than 1 so that we can write C, , =
Ck—n mod n- We will also read the subscripts periodically: for example, ¢y, 3 = c;.
For circulant matrices, matrix multiplication takes the form of a circular convolution:
ify = Cx, we have

N—=1
In = Z Ce—n- (B.IO)
k=0
EIGENVECTORS OF CIRCULANT MATRICES ~ Suprisingly, all circulant matrices have the

same eigenvectors. These eigenvectors consist of (N-th) roots of unity: the complex
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numbers z satisfying z¥ = 1. The first complex root of unity is

27Ti

w=en, (B.11)

and its powers w* are other roots of unity, since (w*)" Ny«
@, ..., N
complex plane (see Figure B.1). Importantly, these numbers (like the coefficients
) are periodical: @V = " - @* = k.

This property allows us to show that the N eigenvectors of a circulant matrix

= (w")* = 1. The numbers
can be visualized as evenly spaced points on the unit circle in the

are
w, = (@"°, ..., WD), (B.12)

forn = 0,...,N — 1. You can verify this directly when n = 0, since w, is then
an an all-ones vector, but let’s consider the general case. We have to show that
Cw, = 4,w, for some constant 4,,. Using (B.10), we can show that k’the entry of
the left hand side indeed equals 4,0

N=1
(Ce,) = Z g - "7 (B.13)
=0
N—1 .
=" . Z Gk ® "8 (B.14)
=0
=" cr -l (B.15)
j
/=0
—
An

Here we first multiplied by w™"*/w™"* to align the indices of the coefficients and
the powers. Then we used the periodicity of the roots of unity to reorder the sum,
soitno longer depends on k and must equal the eigenvalue 4,. The general case is
similar.
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1 The expression for the
eigenvalues is slightly differ-
entdepending on whether N
isodd or even.

Summarizing, every N X N circulant matrix C has the same N eigenvectors

W, --- » W, with (different) corresponding eigenvalues:
— e N-1
A, = o + " ... ey, (B.16)
Nl omin
=) ge v, (B.17)
j=0
forn = 0,...,N — 1. From the second expression one sees that the eigenvalues
(Ags -+- » Ay_,) are the discrete Fourier transform of (cy, ... , Cy_y)-

REAL CIRCULANT MATRICES  In the scenario we are interested in, the matrix Cis real
and symmetric, and such matrices have real eigenvalues and eigenvectors. To see
that the eigenvalues are real, first note that a symmetric circulant matrix satisfies
the additional constraint ¢, = cy_,. Also observe that w* and wV* = w = are each
others mirror image in the real axis (see Figure B.1). They have the same real part,
27k )

)

Re(w®) = cos(—

N (B.18)

and when adding them, the complex part cancels out: @* + @~ lies on the real
axis, at the point 2Re(cw"). This means that

¢ + cy_ ™ F = 2¢,Re(w¥) (B.19)

is a real number. From (B.16) we see that the eigenvalues 4, consist of many such
sums: all complex parts cancel out and the eigenvalues are real*

Now we can also choose real eigenvectors: the real part of w,,. After all,if w,, is
an eigenvector for the real eigenvalue 4,, so are w_, and v, = 12(w, + w_,). By
the same argument as before, equations (B.19) and (B.18) show that this is a real
eigenvector:

2
v, = (1, cosf, ..., cosN@), 6= % (B.20)
This is a discrete cosine function consisting of N points, where higher n implies in
higher frequencies. This is illustrated in Figure B.2.

TOEPLITZ IS ASYMPTOTICALLY CIRCULANT  The reason circulant matrices are interesting
here, is that Toeplitz matrices can be shown to be asymptotically equivalent to
circulant matrices, and that eigenvalues are preserved. We refer to Gray (2006)
for a detailed discussion of that result. What this implies is that the eigenvectors
of large Toeplitz matrices are well approximated by those of circulant matrices:
sinusoidal functions. That in turn means that approximately Toeplitz covariance
matrices (which are real and symmetric) will have cosine-shaped eigenvectors.

PCs of random processes
We want to end by discussing two examples where Toeplitz covariance structures

arise, and we thus would expect cosine eigenvectors, at least asymptotically.

WEAKLY STATIONARY PROCESs ~ Toeplitz matrices arise in the study of weakly station-
ary processes. These are random processes where the mean is constant over time,
and where the covariance does not change by shifts in time: it only depends on
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the distance between two time steps. That is, when Cov(x;,x;) = K(j — ) is some
function of j — 7, and thus results in a Toeplitz covariance matrix.

One example of such a process is a first order autoregressive process Ar(1),
where

X, = PX,_1 + 7, (B.21)

where 7, is a random step with mean zero and variance 0%, and we assume x, = O.
It can be shown that this process has mean E[x,,] = 0 and variance Var|[x,] = 1/1-p?
if |p| < 1. In that case, the covariance is

O.Z

—p ol (B.22)

Cov(x;,x;) =

This is actually one of the few cases where an analytic expression for the eigenvec-
tors is known, although it is rather complex (Rao & Yip, 1990; Ray & Driver, 1970).
Interestingly, one can use this to show that for aAr(1) processes, the discrete co-
sine transform pcT-11 becomes equivalent to the ‘principal component transform’
(Karhunen-Loéve transform) as p — 1 (Rao & Yip, 1990, section 3.3.2).

HIGH-DIMENSIONAL RANDOM WALK  In the limit 0 — 1 one obtains a random walk.
Antognini and Sohl-Dickstein (2018) analyse the principal components of high-
dimensional random walks. We briefly summarise their results. Consider a ran-
dom walk in RM with N steps given by

X, =X, +71, (B.23)

where r, is arandom step drawn from a probability distribution with zero mean
and a finite, normalized covariance matrix. We start from x, = 0 in R™.

We can express all this as matrix multiplications. Collect the points x, and
stepsr,, as the rows of the N X M matrices X and R respectively. Let Wbe a N X N
matrix with 1’s on the diagonal, —1’s on the subdiagonal and zeros elsewhere. This
implements the walking mechanism in the sense that WX = R, hence

X=W'R. (B.24)

To compute the covariance matrix S we need the centered datapoints X, = X, — X,,.
The centering operation be conveniently expressed as multiplication by the N X N
centering matrix C = I — 5.J, where J is the all-ones matrix. This gives

X=CX=CW™'R (B.25)

and allows us to express the covariance matrix as S = ~X"X. Instead of finding the
eigenvectors of X"X, we can look for those of XX”. After all, if u is an eigenvector
for "X with nonzero eigenvalue 4, then v = Xu is the corresponding eigenvector
for XX”.

Putting all this together, Antognini and Sohl-Dickstein (2018) look for the eigen-
values and eigenvectors of

XX" = cW'RR"W™TC (B.26)

where we used symmetry of C. Note that this matrix contains the covariance
between timesteps, rather than dimensions. They observe that in the limit of
infinte dimensionality M — oo, we have that RR” tends to the N X N identity
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matrix. This allows us to simplify (B.26) to
XX"=cw~'wTc. (B.27)

Since W is a so-called banded Toeplitz matrix, and C is circulant, the whole expres-
sion can be shown to be asymptotically equivalent to a circulant matrix, meaning
that the eigenvectors are cosines. This analysis can be related to melodic contours,
when we consider a collection of M contours of length N as one high-dimensional
walk through R,
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c1 IEMP Cuban Salsa and Son

Here we show the 1EMP Cuban Salsa and Son data in more detail.

INDIVIDUAL INSTRUMENTS VS. SURFACE  First, we compare the individual instruments
versus the surface rhythm. The former considers the intervals between onsets of a
single instrument and then concatenates the intervals for all instruments. The
latter, surface rhythm, is obtained by computing intervals between successive
onsets of any two instruments. Onsets fewer than 25ms apart are considered to
be simultaneous and ignored (cf. Roeske et al., 2020). The two are quite different,
which is surprising given that Roeske et al. (2020) write that overall, “the two
types of extraction (separate for each instrument and simultaneous for combined
‘surface’ rhythm) produced similar results”.

Individual instruments Surface rhythm

131
LA 3

132 121 231
R S

0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2
duration (s) duration (s)



DIFFERENT INSTRUMENTS ~ Second, we compare different instruments within Song
1. Different instruments clearly play different rhythms, but there is also a lot of
overlap. The triangle plots also appear to show timing: the mode around 1:1:1
for the conga, for example, has a peculiar triangular shape. And the Cajon is very
reliably avoiding the 1: 2 : 2 ratios.

bass bell bongos

W
_ S

122 23] 1%2 221
'lll ~7 l}l
IK 2% _é“ &2 212 g‘]
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guitar tres trumpet
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DIFFERENTSONGS  Third, we compare the five different songs. Most of the rthythmic
categories are found in all songs, but song 2 appears to be more clearly timed and
song 3 is a bit slower.

Song 3
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Cc2 Measuring isochrony

In this section, I give a formal definition of the proposed measure of isochrony,
first for motifs of length n = 2 and then for general lengths. It will be convenient
to define isochrony in terms of its opposite, which I will call anisochrony.
LENGTH2 Take a sequence of inter-onset intervals i, ... , i, and group them into
normalized motifs of length 2 (normalized 2-grams):

T = (17]‘, ﬁ) (C)
U TR P

By normalizing, we capture the duration of each interval relative to the total dura-

tion of the motif. The sequence of intervals (1, 2, 4, 3, 3) for example gives motifs

(1/3,2/3), (1/3,2/3), (4/7,3/7) and (1/2,1/2).

One can think about the nPVI as measuring the average “irregularity” of such
motifs. Or, to propose a technical term, the anisochrony, from Greek dnisos “un-
equal”: it really measures how distant a motif (a, b) is from the isochronous mo-
tif (1/2,1/2); how not-isochronous a motif is. We can measure the distance from
isochrony as |a—1/2|+|b—1/2|. For example, the anisochrony of the motif (0.6, 0.4)
is 0.2, precisely the adjustments needed to turn the motif into an isochronous

rhythm.
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More formally, we define the anisochrony of a motif r, = (a, b) to be its distance
to the isochronous motif (1/2,1/2):

anisochrony((a, b)) : = |a— %| +|b— %| = |a—b (C.2)

To see that the second equality holds, note that b = 1 — g, so that the left-hand
sideequals |[a — /2| + [/2— (1 —a)| =2|a—1/2| = |a— (1 —a)| = |a —b|. We
define the nPVI as 200 times the average anisochrony. To see that this is exactly
equivalent to the conventional definition of nPVI, we fill in the definitions of a and
bin terms of intervals:

K—1

i
PVI = 200 X 7— lkzl r +1k+1 r -|Ii+z'i+1 (C3)
_ 100 Kz:l i — 1k+1 (C.4)
1/2 lk = i + Gy
- 100 S| e e . (C5)
K—=1&01/2(i, + dyyy)

And this latter form is the usual definition.

LONGER MOTIFS  The more general definition suggests a natural generalization
to longer motifs. In the rhythm triangle, for example, we find 3-gram motifs
(a, b, c), and their anisochrony would be their distance to the isochronous triplet
(1/3,1/3,1/3) at the center of the triangle. And this can easily be extended to even
longer motifs of arbitrary length n. To do so, observe that we have implicitly used
the L, norm to define distances. Essentially, for a normalized motifr = (r,, ..., 7,),
we defined

anisochrony(r) = C, - |r —I||,, I=/ny...,l/n) (c.6)

where I is the isochronous motif and C, should be a normalizing constant such
that the anisochrony falls between o and 1. Now note that the motifs furthest
away from I are the motifs at the corners of the space: those with n — 1 zeros and a
single one. Their distance to I is

1 1 _n—1,n—1_2n-1)
=g+ =D o= o] = Fom B = SR ©7)
And so we choose C, = n/(2(n —1)):
anisochrony(r) = - i)rk - l‘ (c.8)
20zn—1) & n

When #n = 2 all this boils down to the exact same definition as before. And indeed
to wrap things up, we let isochrony(r) = 1 — anisochrony(r), which takes values
between o (maximally non-isochronous) and 1 (perfectly isochronous). For a
finishing touch, let’s turn the definition around and define the (n-gram) isochrony
of ras

isochrony(r) =1—a(r), (C.9)

which takes values between o (maximally non-isochronous) and 1 (perfectly
isochronous).
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AND BEYOND? The core idea of all this is simple: you measure distances from a
motif to some reference motif like the isochronous one. But you can use other
reference points. All small-integer ratios, for example, and if you then take the
minimum over all those distances, we get the irrationality of a motif: how far it is
from the closest small-integer ratio motif:

Anisochrony (1,2)-irrationality (1,2,3)-irrationality

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
anisochrony (1,2)-irrationality (1,2,3)-irrationality

Supplements for chapter 7: Rhythm triangles 183






SUPPLEMENT D

Supplements for
chapter 8: Contour

typology

D1 ExperimentalSetup . . . . . ... ..ot iiiit . 185
p2 Clusterabilityofcontours . . . . . ... .. ... ... ... 186
p3 Length-wiseanalysis . . ... ... ... ............ 188
D4 Averageshapes . . . ... ... .. ... ... 190

D1 Experimental setup

A. Melody B. Step curve
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We represent all melodic fragments, be it phrases or random segments (A), as
sequences of 5o pitches, sampled from step curves interpolating the melodies (B).
Then we standardize the pitch in 5 ways (c): not at all, by centering, normalizing,
tonicizing (not possible for synthetic contours), and finalizing. Moreover, we
compute a 5o-dimensional cosine contour representation (D, illustrated in 2d),
and two relative representations (g): an interval representation and a smoothed
version thereof. Finally, we compute pairwise distances using Euclidean distance,
ptw dissimilarity or (Euclidean) distance in a 10-dimensional umAP projection.
It is worth noting that when we compute bTw similarity on (smooth) interval



representation

representation

representations (i.e., on the derivative of the time series) we are effectively using
derivative dynamic time warping (Keogh & Pazzani, 2001). This variant of bTw was
proposed to make DTW more robust to small changes in the time series, and usually
results in better alignments. We do not use bTw for cosine contours, as it consists
of discrete cosine transform coefficients, which do not form a time series.

D2 Clusterability of contours

Here we show the p-values of the Hartigans’ dip test on the set of pairwise distances
between contours, using Euclidean, bTw and umapr distance. The color coding
is the same as in Figure 8.4 and is yellow-green for significant results, and gray
for insignificant results, using a significance threshold of 0.05. Only with umar
distance does the test correctly provide evidence for multimodality in the clustered
dataset (D). Note, also, that the interval representation finds more evidence for
multimodality across all four datasets—even in the uniform, synthetic dataset (c).
But since that dataset is synthesized to contain no clusters, we treat this as a false

positive.
A. Phrases B. Random segments C. Synthetic contours D. Clustered contours 100
pitch - 1 1 1 - 1 1 1 - 1 1 1 - 1 1 F
pitch_centered - 1 1 1 - 1 1 1 - 1 1 1 -1 1 i
E 107!
pitch_normalized - 1 1 0.027 - 1 1 1 - 1 1 1 - 1 1
pitch_tonicized - 1 1 1 - 1 1 1 - - I ]
- 1072 E
pitch_finalized - 1 1 0.8 - 1 1 1 - 1 1 1 a
cosine - 1 1 E 1 1 - 1 1
1073
et~ 0020 [ oc oo I 2 o o 1
smooth_derivative - 1 1 1 - 1 1 1 - 1 0.4 0.8 1
' ' ' ' ' ' ' | ' ' ' 107*
eucl dtw umap eucl dtw umap eucl dtw umap eucl dtw umap
metric metric metric metric
UNIQUE CONTOURS ONLY ~ We repeated the analyses on samples of unique contours,
and the overall pattern remains the same.
A. Phrases B. Random segments C. Synthetic contours D. Clustered contours 100
pitch- 1 1 1 - 1 1 L 0 1 1 -1 1 :
pitch_centered - 1 1 1 - 1 1 1 - 1 1 1 - 1 1 i
t 107
pitch_normalized - 1 1 1 - 1 1 1 - 1 1 0.7 -1 0.4
pitch_tonicized - 1 1 0.6 - 1 1 1 - - £
-1072'8
pitch_finalized - i3 4 3 - 1 4 1 1 4 3 1 E a
cosine - 1 1 - 1 1 - 1 1
10-3
interval - 0.039 0 6.0e-6 0.054 0 1 - 03 0.8
smooth_derivative - 1 1 1 - 1 1 1 - 1 0.9 1 1
' ' ' ' | ' ' | ' ' | 1074
eucl dtw umap eucl dtw umap eucl dtw umap eucl dtw umap
metric metric metric metric
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LOWER DIMENSIONALITY  We repeated the analyses on lower-dimensional contour
representations of 10 rather than 5o pitches, by subsampling the 5o-dimensional
contours, or in the case of cosine contours, taking only the first 10 coefficients.
Again, the overall pattern remains the same:

A. Phrases B. Random segments C. Synthetic contours D. Clustered contours 100
pitch- 0.8 0.4 1 - 08 0.5 1 -1 0.8 1 - 08 04  0.026 f
pitch_centered - 1 1 1 - 1 1 1 - 1 1 1 -1 1 [
E 10!
pitch_normalized - 1 1 1 -1 1 1 -1 1 0.024 - 1 1
c F
S X
®  pitch_tonicized - 0.7 0.066 1 - 09 0.4 1 - - i
c -2
@ - 10
¢ pitch_finalized - 0.8 0.4 1 - 09 0.3 1 -1 0.7 1 - 08  0.019 1 E
£ F
@
N cosine- 1 1 -1 1 -1 1
1073
smooth_derivative - 1 1 1 - 1 1 1
10°*

! ! ! ! ! ! ! d ! !
eucl dtw umap eucl dtw umap eucl dtw umap eucl dtw umap
metric metric metric metric

PERDATASET The results for ‘phrases’ above all use the aggregate, cross-cultural
dataset. Here we show the results for three datasets separately. Again, the overall
pattern remains the same.

Erk Han Antiphons

-10°
pitch - 1 1 i - 1 1 1 L 1 1 0.6 E
pitch_centered - 1 1 1 - 1 1 1 -1 1 1 [
-
pitch_normalized - 1 1 0.079 = 1 1 1 -1 1 0.017
c r
k] [
® pitch_tonicized - 1 1 1 E 1 1 1 - 09 0.7 0.2 [ g
é -1072 E
o pitch_finalized - 1 1 1 - 1 1 1 -1 0.8 i a
g
cosine - 1 1 - 1 0.9 -1 1
1073
interval SSERIEE 0 0.032 - 02 “ 1 0 0 4.3e-6
smooth_derivative - 1 1 1 - 1 1 1 - 1 1 1
' | ' ' | ' ' | ' 1074
eucl dtw umap eucl dtw umap eucl dtw  umap
metric metric metric
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D3 Length-wise analysis

The length of a phrase may affect its shape, and perhaps we don’t find clusters
because we aggregate all lengths. We thus repeat the analyses, but now for every
length (measured in the number of notes) separately. First, this it the distribution
of lengths in the datasets:

Number of contours per length
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= 600
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EUCLIDEAN DISTANCE  Next, we show the same p-values as before, but now the
length is shown vertically, and the representation horizontally. With Euclidean
distance, we only see evidence appearing for some clusters of very short contours
of 4—5 notes. This is not surprising: the space of possibilities is small, and there
are only a few such contours. Indeed, even uniform synthetic contours of length
four can appear clustered. Note that many of the synthetically clustered contours
still avoid detection.

B. Random segments C. Synthetic contours
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UMAP-DISTANCE

again primarily for shorter motifs, and in particular with the normalized pitch
representation. There is also some clustering for longer phrases. But for the most
common phrases of average length, that evidence is largely absent and certainly
not nearly as strong as the evidence for clustering in the synthetic, clustered

dataset.
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C. Synthetic contours
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With umapr distance, we see more evidence for clustering, but

189

D. Clustered contours
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D4 Average shapes

A. Adams' typology

B. Huron's typology

21 1 12 Descencing Horizontal Ascending
231 121 132 Desc-horiz. Convex Asc-horiz.
312 212 213 Horiz.-desc Concave Horiz.-asc
N N T PN N
3412 2312 2413 Datasets: Erk Han

[

3142

;

2132

C. k-means typology: centroids for various k
k=3

We show the average of all contours with a certain type for Adams’ (A) and Huron’s
typology (B), for two datasets: Erk (blue) and Han (orange). The theoretical shape
is shown in the background (see Figure 8.1). For the k-means typology () we show
the centroids for k = 3, 4 and 5 clusters. Similarly shaped centroids are similarly
colored across values of k. The shapes in smaller typologies (k-means or Huron’s)
are more recognizable than those in Adam’s typology. Also note the characteristic
flattening at the beginning and end of each contour, caused by every first and final
note necessarily being flat.
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E1 Textual structure of Summa

The piece consists of 16 sections, marked by rehearsal numbers, of each 3 bars.
Measures in a section contain 7, 9 and 7 syllables respectively, and use different
voices: sa, then saTB and finally TB. The next section mirrors this structure. Sylla-
bles are distributed across the bars following this scheme, even if this means that
abar line falls in the middle of a word.
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E2 Approximate patterns

The first plot shows the pattern of repetitions of the melodic voices. All repetitions
of the alto (A) and bass (B) are plotted above one another. We manually identified
an approximate pattern of notes and ornaments (shown in the background) that
best matches all of the repetitions. In other words, it minimizes the number of
deviations. For the T-voices (next two plots), this turned out to be a crucial step in

understanding their construction.

A. Repetitions of the alto pattern
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B. Repetitions of the bass pattern
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The pattern of repetitions of the tintinnabuli voices is shown in a similar way
as for the melodic voices. The patterns are now however twice as long.

A. Repetitions of the soprano pattern
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B. Repetitions of the tenor pattern @wmn  approximate pattern
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E3 Tenor and soprano ornaments

The RepeatPrevious process generates the ornaments for the soprano (A) and tenor
(B) by repeating the previous note if this is not equal to the next note. As explained
in the main text, this process has several parameters that constrain the range of
the ornaments. For the soprano the ornaments have to lie between b = E, and
B = E,, while the next note has to fall below C = E;. For the tenor, we use b = E;,
B=E,and C =B,.

A. Soprano ornaments B. Tenor ornaments

E3 - -

E4 Alto and bass ornaments

The TailRotatedPatternProcess process generates the ornaments for the alto (a)
and bass (B) parts. The black lines show the respective melodies, and ornaments
are indicated by colored plusses. It essentially repeats a 16-note pattern of orna-
mentation but rotates the tail every time to keep the ornamentation in sync with
the melody (see main text for details).

A. Alto ornaments B. Bass ornaments

MV AAA
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ES Implementation: code sample

Fragment of the implementation. Using tintinnabulipy, all notes and ornaments
of the alto and soprano can be constructed in just a few lines of code. The tenor
and bass are similar. The majority of the remaining code is needed to turn this
into an actual score (i.e., a musicxml file).

**

Define the melodic spaces
M = MelodicSpace(MinorScale('E4'))
T = TintinnabuliSpace(Chord(['E4', 'G4', 'B4']))

# Construct the alto melody and ornaments

alto_pattern = glue(M.mode2(6), M.mode4(6), M.mode1(2), M.mode3(2))[:-1]

repetitions = [rotate_tail(alto_pattern, i) for i in range(16)]

alto = concatenate(*repetitions)

ornament_pattern = [None, 'G3', None, None, None, 'B3', None, 'E3',
None, None, 'B3', None, None, None, None, None]

alto_orn_process = TailRotatedPatternProcess(T, alto_pattern)

alto_ornaments = alto_process(alto, tO=False)

# Construct the soprano melody and ornaments

soprano = StepProcess(T, position=2)(alto)

sop_orn_process = RepeatPreviousProcess(T, ['E4', 'E5'], [None, 'E5'])
sop_ornaments = sop_orn_process(soprano, t0=soprano[0])

E6 Ending of Summa

The ending of Summa (A) is more freely composed than the rest of the piece and
deviates from the patterns observed before. The alto finishes the last repetition of
the basic pattern in a four-note melisma, to end on the tonic. Meanwhile, the bass
and tenor hold an open fifth on ’Amen’. The reconstruction (B) of course cannot
accurately reproduce these measures. We treat the errors as ornament insertions
and count 2 extra insertions for all voices.

A. Original (mm. 48-49) B. Recontruction (m. 48)

=
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Summary

Measuring musics
Notes on modes, motifs, and melodies

Humans are a musical species: we sing, dance, play, or listen, no matter where we
are from. To understand why, musicologists have long studied the rich diversity
of musical traditions—or musics—found around the world. One can, for example,
compare musics to identify properties that many musical traditions share or prop-
erties that very few share. But such questions require you to somehow measure the
properties of interest. And that idea motivates this dissertation: can we develop
computational methods to measure musics, so that we might compare them? A
series of studies, interspersed with lighter interludes, discusses ways to measure
modes in plainchant, inventories of melodic and rhythmic motifs, and the shapes
of melodies, ending with an intricate rarity: music by Arvo Pért.

This dissertation primarily analyzes sheet music from a range of musical tra-
ditions. In the Catafolk project, we collect a sizeable cross-cultural corpus by
bundling several existing corpora, mainly containing German, Chinese, and Na-
tive American songs. We also present two corpora of Western plainchant (Cantus
Corpus and GregoBase Corpus) and a Python package to parse the plainchant
formats. This leads to a series of studies of plainchant. We confirm the melodic
arch hypothesis—that phrases tend to be arch-shaped—in plainchant, analyze
the predictability of a particular musical connection, and train a small recurrent
neural language model to compose new chant artificially.

The centerpiece, however, is a study in which we measure the main organiza-
tional structure of plainchant: the eight modes. Modes are melody types that lie
somewhere between abstract scales and concrete melodies. We compare three
ways to classify musical mode: two approaches that largely view mode as a scale
and one distributional approach that focuses on its melodic character. We find
that this latter approach can still determine mode fairly accurately even when all
pitch information has been discarded. However, this only really works when the
mode is segmented in the ‘right’ way: in units corresponding to textual units such
as syllables and words.

The smaller units into which music can be decomposed, here called motifs, form
the second thread in this dissertation. In the case of plainchant melodies, variable-
length motifs corresponding to textual units proved fruitful, but fixed-length
motifs can also be helpful when studying rhythmic data. We show how plotting
all motifs of three successive temporal intervals in a so-called rhythm triangle
effectively highlights rhythmical structures in music and animal vocalizations.
It motivates a novel measure of isochronicity—how steady, pulse-like a rhythm
is—that generalizes a more commonly used measure (the nPVI). Extending these
ideas to melodies, we propose to visualize motifs of three successive notes (or two
intervals) in what might be called a melody square to help identify common and
rare melodic patterns.

The third thread in this dissertation concerns the shapes of melodies. How can
one best represent—measure, if you like—melodic contour? It turns out that one
can efficiently describe variability in contour shapes using cosine functions as they
closely approximate the principal components of melodies. This leads to a new
contour representation, cosine contours, effectively representing the melodic shape
using a discrete cosine transform. Cosine contours give a continuous description of
contour, while most previous work describes shapes in a discrete fashion, using

210 Appendices



a fixed set of contour types. We ask if such discrete typologies can accurately
describe the variability in contour shape. Rephrasing this as a clustering problem,
we propose a way to measure the presence of statistical modes—but find none.
This suggests that melodic phrase contours do not cluster into separate types
and that discrete typologies may not provide the most appropriate description of
melodic contour.

This dissertation ends with a somewhat dissonant finale. Whereas earlier
chapters are distant readings of large music collections, the final chapter is a close
reading of a single piece: a rarity. Instead of analyzing ‘informal’ music by formal
means, we now use formal means to understand the ‘formal’ music of Arvo Pirt.
His music is well known to be constructed according to precise mathematical
rules, and we attempt to reconstruct the full score of his piece Summa using formal
procedures. This formalization makes the constructions that possibly underlie the
composition completely transparent. It also highlights the vast range of musical
diversity, from a formal composition to a simple folk song. To our understanding
that diversity, this dissertation makes only modest contributions. Bug, if this
dissertation inspires new research or new music, its hopes have been fulfilled.
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Samenvatting

Muziek meten o
Over modi, motieven en melodieén

De mens is een muzikale soort: we zingen, dansen, spelen of luisteren, ongeacht
waar we vandaan komen. Om te begrijpen waarom dat zo is, bestuderen muziek-
wetenschappers de grote rijkdom aan muziektradities die je over de hele wereld
kunt vinden. Door muziektradities te vergelijken, kun je bijvoorbeeld proberen
te achterhalen welke eigenschappen in veel tradities voorkomen, of welke eigen-
schappen juist heel zeldzaam zijn. Maar om dat te doen, moet je die eigenschappen
wel op een of andere manier kunnen meten. En datis de motivatie achter dit proef-
schrift: kunnen we computationele methoden ontwikkelen om muziektradities
te meten en ze zo te kunnen vergelijken? In een reeks studies, afgewisseld met
lichtere interludes, worden manieren besproken om modi in gezangen, melodische
en ritmische motieven, en de vormen van melodieén te meten, om af te sluiten met
een complexe zeldzaamheid: de muziek van Arvo Pért.

In dit proefschrift analyseren we voornamelijk bladmuziek, uit een aantal ver-
schillende tradities. In het Catafolk-project bundelen we bestaande corpora, met
voornamelijk Duitse, Chinese en inheems Noord-Amerikaanse muziek, tot een
crosscultureel corpus. We presenteren ook twee corpora met Westerse kerkgezan-
gen (Cantus Corpus en GregoBase Corpus), samen met Python-software om de
muziek uit te kunnen lezen. Deze corpora gebruiken we in een aantal studies naar
kerkgezangen. We bevestigen bijvoorbeeld de bekende hypothese dat de melo-
dieén van frases doorgaans boogvormig zijn, analyseren de regelmatigheid van een
specifieke muzikale overgang en trainen een klein, recurrent neuraal taalmodel
om nieuwe, kunstmatige gezangen te componeren.

Het middelpunt is echter een studie naar de centrale organisatiestructuur van
kerkgezangen: de acht modi. Modi zijn melodietypen die het midden houden
tussen abstracte toonladders en concrete melodieén. We vergelijken verschillende
manieren om de modus van een gezang te bepalen: twee benaderingen die modus
grotendeels als toonladder beschouwen, en een meer gedistribueerde benadering
die het melodische karakter benadrukt. Die laatste benadering maakt het zelfs
mogelijk om met redelijke nauwkeurigheid de modus van een gezang te bepalen,
vrijwel zonder toonhoogte-informatie te gebruiken. Het lijkt dan wel belangrijk te
zijn om de melodie op de juiste manier te verdelen in eenheden die overeenkomen
met tekstuele eenheden als lettergrepen en woorden.

De kleinere eenheden waarin muziek uiteenvalt, die we hier motieven noemen,
zijn een tweede thema in dit proefschrift. In het geval van gezangen bleken motie-
ven van variable lengte behulpzaam om modus te bepalen, maar motieven met
vaste lengte kunnen nuttig zijn om ritmische data te bestuderen. In het geval van
gezangen blijken motieven van variable lengte behulpzaam voor modusbepaling,
maar motieven met vaste lengte kunnen nuttig zijn om ritmische data te bestude-
ren. We laten zien hoe je ritmische structuren in zowel muziek als dierengeluiden
effectief kunt visualiseren in een ritmedriehoek. Zo'n driehoek laat alle ritmische
motieven zien, die uit drie opeenvolgende tijdsintervallen bestaan. Deze visualisa-
tie brengt ons bij een nieuwe maat voor isochroniteit—hoe gelijkmatig, puls-achtig
een ritme is—die bovendien een generalisatie is van een gangbare maat (nPVI).
We breiden deze ideeén ook uit naar melodieén en laten zien hoe motieven van drie
opeenvolgende noten (twee intervallen) in een melodieénvierkant kunnen worden
weergegeven om zo veelvoorkomende en zeldzame motieven uit te lichten.
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De vormen of contouren van melodieén zijn het derde thema in dit proefschrift.
Hoe kun je de contour van een melodie het beste meten? Blijkbaar kun je de va-
riatie in melodische contouren efficiént beschrijven met behulp van cosinussen,
omdat die de principale componenten van een verzameling melodieén goed lijken
te benaderen. We stellen daarom een nieuwe contourrepresentatie voor, de cosi-
nuscontour, die de vorm van een melodie in wezen beschrijft aan de hand van een
discrete cosinustransformatie. Cosinuscontouren geven een continue beschrijving
van de vorm van melodieén, terwijl eerdere studies de vormen juist aan de hand
van discrete typen beschrijven: stijgend, dalend, boogvormig, enzovoorts. Geeft
zo’n discrete typologie een goede beschrijving van de variatie in melodievormen?
We vertalen dit naar een clusteringprobleem en stellen een methode voor om
de aanwezigheid van statistische modi te testen—maar vinden er geen. Dit sug-
gereert dat melodievormen niet in verschillende typen uiteenvallen en dat een
discrete typologie daarom misschien niet de beste beschrijving van melodische
contour geeft.

Dit proefschrift eindigt met een dissonante finale. Waar in eerdere hoofdstuk-
ken door een verrekijker naar grote collecties muziek werd gekeken, wordt in
het laatste hoofdstuk juist één werk onder de loep genomen. En in plaats van
‘informele’ muziek met formele methoden te benaderen, gebruiken we nu for-
mele methoden om de ‘formele’ muziek van Arvo Pirt te bestuderen: composities
waar vaak precieze, wiskundige patronen aan ten grondslag liggen. We probe-
ren daarom om de volledige partituur van het werk Summa te reconstrueren met
behulp van formele procedures. Zo’n formalisering legt de mogelijke construc-
tie bloot waar de compositie omheen is gebouwd. Het illustreert ook weer de
reikwijdte van muziek: van formele composities tot eenvoudige deuntjes. Dit
proefschrift draagt maar een klein steentje bij aan het begrip van die muzikale
diversiteit, maar hopelijk prikkelt het voldoende om nieuw onderzoek te inspire-
ren—of nieuwe muziek te laten klinken.
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