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S1 Random walk baseline
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We compared the principal components of phrases to
a random walk baseline that was intended to be fairly
similar to actual phrase contours. First, we draw the
length (number of notes) K of the random walk from a
Poisson distribution with mean λ = 12 (truncated be-
low 3). The value 12 was chosen so as to approximate
the length distribution of phrases. Then we draw an
initial pitch x0 uniformly between 60 and 85 (in MIDI
pitch space). Next, at every step k we draw the size
of a step rk (the interval) from a Binomial distribution
with parameters n = 10 and p = 0.5, shifted to have
mean 0, and let the next pitch be xk = xk−1 + rk. We
constrain the step sizes to lie between −12 and +12,
meaning that jumps cannot exceed an octave. This
results in small, approximately normally distributed
step sizes. This process yields a sequence of pitches
x0, . . . , xK−1. As usual, we interpolate a step function
through these pitches and sample N = 100 equally
spaced pitches to obtain a random contour. In the fig-
ure above we use N = 50 for readability.
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Here we vary the average length λ of the random walk
baseline. This affects the number of notes K, but we
still have N = 100 throughout. We generate 10,000
random contours, and compute the covariance matri-
ces (A). The longer the melodies (larger K), the more
the covariance matrix starts to resemble a Toeplitz ma-
trix, which has constant values along each of its diag-
onals. As an ad-hoc measure of Toeplitzness, we mea-
sure how much every entry of the covariance matrix
differs from the mean value on that diagonal. For a
Toeplitz matrix, that should be zero everywhere: all
diagonals are constant, so every entry also equals the
mean of that diagonal. Column (B) makes clear that
the covariance matrix differs from a Toeplitz matrix
mostly in the upper left corner, which contains the co-
variance in the first timesteps. All this is also reflected
in the principal components (C).

2



S2 Analyses of other datasets

In this section we visualize the principal components
of melodic material from motifs to songs in different
traditions. For every dataset we show:

a. The first four principal components. The first
one is usually a flat line (gray), the second a de-
scending shape (blue), the third a convex shape
(orange), and the fourth one undulating (green).
The corresponding cosines are shown as thin
dashed lines in the same colors.

b. The length distribution of the melodic material,
where length is measured in quarter notes. For
Gregorian chant we assume all notes are quarter
notes.

c. The covariance matrix.

d. A scatterplot showing the representations of 2000
contours in 2d cosine contour space.

e. The reconstruction error using the discrete co-
sine transform compared to a principal compo-
nent analysis.

It is clear that the cosine approximation is most ac-
curate at the phrase level. For very short melodic
fragments (such as neumes or syllables), you see clear
effects of the typical number of notes. For example,
neumes often have only 2 notes, meaning there is a
jump in the middle of the contour. You can see this
in the principal components, but also in the covari-
ance matrix. Such effects are weaker, but sometimes
still visible at the phrase level: German folksongs ap-
parently often have durations of 8 quarter notes, with
jumps in the middle, or after 2 of 6 quarter notes. For
complete songs, finally, the principal components are
often difficult to interpret. Only for a very large num-
ber of songs (such as when combining all chants in
GregoBase) does a pattern reminiscent of the cosines
emerge. But for very small datasets, such as those
in the Densmore collection, the principal components
are very irregular.

S2.1 Motifs

All motifs come from Gregorian chant (responsories
from CantusCorpus).
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Syllables
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S2.2 Phrases

German: Erk
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Chinese: Han
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Antiphons
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S2.3 Random segments

German: Erk
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German: Han
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Antiphons
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S2.4 Phrases (continued)

German: Boehme
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Chinese: Shanxi
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Responsories
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S2.5 Random segments (continued)

German: Boehme
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Chinese: Shanxi
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S2.6 Songs

German: Erk
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Chinese: Han
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All chants in GregoBase
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German: Boehme
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Chinese: Shanxi
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S2.7 Songs (continued)

Teton Sioux (Densmore)
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Nootka (Densmore)
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Papago (Densmore)
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Menominee (Densmore)
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S3 Mathematical background

In this section we provide some more mathemati-
cal background to illustrate why we observe cosine-
shaped principal components. The aim is to make
some of the key points a bit more accessible; we re-
fer to Jolliffe (2002) for a detailed discussion of princi-
pal component analysis, to Gray (2006) for a rigorous
treatment of Toeplitz matrices and their limiting be-
haviour, and to Rao and Yip (1990) for the discrete
cosine transform.

Notation We write N for the length of a contour, or
the number of steps in a random walk, and M de-
notes the number of contours. Consider a dataset
{x1, . . . , xM} of points xm = (xm1, . . . , xMN) in RN .
We denote the sample mean by x̄ and the centered
data points by x̂m:

x̄ =
1
M

M

∑
m=1

xm and x̂m = xm − x̄, (S3.1)

and both of course live in RN . An M × N matrix X
has entries (X)m,n = xmn, and for N × N matrices we
generally index rows by n and columns by k.

S3.1 Principal components

Maximize projected variance The goal of a princi-
pal component analysis is to find a subspace of lower
dimensionality D < N that maximizes the variance
of the data when it is projected on this subspace.
First, we project the data on a one-dimensional sub-
space spanned by the unit vector u1 ∈ RN . You
can think of the projection of xn as a point in the N-
dimensional ambient space, but we rather treat it as
the scalar uT

1 xn: the coordinate in the one-dimensional
subspace. The projected data then has mean uT

1 x̄ and
variance

1
M

M

∑
m=1

(
uT

1 xm − uT
1 x̄
)2

= uT
1 Su1, (S3.2)

where S is the N × n covariance matrix given by

S =
1
M

M

∑
m=1

xm − x̄)(xm − x̄)T (S3.3)

We want to choose u1 in such a way that it maximizes
the projected variance uT

1 Su1. It can be shown, using a
Lagrange multiplier, that under the constraint ‖u1‖ =
1, the projected variance is maximized when

Su1 = λ1u1 (S3.4)

(Jolliffe, 2002, see e.g. ). Left-multiplying by uT
1 , and

using that uT
1 u1 = 1, this is the case when

uT
1 Su1 = λ1. (S3.5)

Equation (S3.4) shows that u1 must be an eigenvec-
tor of the covariance matrix S corresponding to eigen-
value λ1, which is exactly the projected variance ac-
cording to (S3.5). The first principal component, in
short, is the eigenvector of the covariance matrix cor-
responding to the largest eigenvalue. The argument
can be extended inductively to identify all principal
components as eigenvectors of the covariance matrix,
ordered according to their eigenvalues.

Minimize reconstruction error It should be noted
that one can also motivate principal components in
another way. Consider a dataset {xm ∈ RN}m as be-
fore, and a set of basis vectors {u1, . . . , vN} for RN

with norm 1. As before, the projection of x on the un
is cn = uT

n x, and so we can represent x as a coordinate
vector (c0, . . . , cN). Now suppose we only use the first
D coordinates to represent x, so we get the truncated
representation:

x̃ =
D

∑
i=1

ciui. (S3.6)

Now measure the reconstruction error as

mse =
1
M

M

∑
m=1

(x− x̃)2 (S3.7)

We ask: how should we choose the basis vectors so
that the reconstruction error mse is minimized? The
answer is the same: as the eigenvectors, ranked in
descending order (Rao & Yip, 1990).

S3.2 Toeplitz and circulant matrices

Toeplitz matrices are matrices were every diagonal has
the same value. They are usually indexed as follows:

T =



t0 t−1 t−2 . . . t−(N−1)
t1 t0 t−1

t2 t1 t0
...

...
. . .

tN−1 . . . t0


(S3.8)

That means that Ti,j = tj−i. Before we discuss Toeplitz
matrices further, let’s focus on the special subset of cir-
culant matrices. A circulant matrix is a Toeplitz matrix

8
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Figure S3.1: The N-th roots of unity for N = 5 are
points on the complex unit circle.

where every row equals the previous row, rotated one
step to the right:

C =



c0 c1 c2 . . . cN−1
cN−1 c0 c1 cN−2
cN−2 cN−1 c0

...
. . .

...
c0 c1

c1 . . . cN−1 c0


(S3.9)

It is convenient to start indexing at 0 rather than 1,
so that we have Cn,k = ck−n mod N . We read the sub-
scripts periodically, so that e.g. cN+3 = c3. For circu-
lant matrices, matrix multiplication takes the form of
a circular convolution: if y = Cx, we have

yn =
N−1

∑
k=0

ck−nxk. (S3.10)

Eigenvectors of circulant matrices Suprisingly, all
circulant matrices have the same eigenvectors. These
eigenvectors consist of (N-th) roots of unity: the com-
plex numbers z satisfying zN = 1. The first complex
root of unity is

ω = e
2πi
N , (S3.11)

and its powers ωk are other roots of unity, since
(ωk)N = (ωN)k = 1. The numbers ω0, . . . , ωN−1 can
be visualized as evenly spaced points on the unit cir-
cle in the complex plane (see figure S3.1). Importantly,
these numbers (like the coefficients ck) are periodical:
ωN+k = ωN ·ωk = ωk.

This property allows us to show that the N eigen-
vectors of a circulant matrix are

ωn = (ωn·0, . . . , ωn·(N−1)), , (S3.12)

for n = 0, . . . , N− 1. You can verify this directly when
n = 0, since ω0 is then an an all-ones vector, but
let’s consider the general case. We have to show that
Cωn = λnωn for some constant λn. Using (S3.10), we
can show that k’the entry of the left hand side indeed
equals λnωnk:

(Cωn)k =
N−1

∑
j=0

cj−k ·ωn·j (S3.13)

= ωnk ·
N−1

∑
j=0

cj−k ·ωn(j−k) (S3.14)

= ωnk ·
N−1

∑
j′=0

cj′ ·ωn·j′

︸ ︷︷ ︸
λn

. (S3.15)

Here we first multiplied by ω−nk/ω−nk to align the
indices of the coefficients and the powers. Then we
used the periodicity of the roots of unity to reorder
the sum, so it no longer depends on k and must equal
the eigenvalue λn. The general case is similar.

Summarizing, every N × N circulant matrix C has
the same N eigenvectors ω0, . . . ,ωn, with (different)
corresponding eigenvalues:

λn = c0ω0 + c1ωn . . . cN−1ωn(N−1) (S3.16)

=
N−1

∑
j=0

cje
2πi·nj

N , (S3.17)

for n = 0, . . . , N − 1. From the second expression one
sees that the eigenvalues (λ0, . . . , λN−1) are the dis-
crete Fourier transform of (c0, . . . , cN−1).

Real circulant matrices In the scenario we are in-
terested in, the matrix C is real and symmetric, and
such matrices have real eigenvalues and eigenvec-
tors. To see that the eigenvalues are real, first note
that a symmetric circulant matrix satisfies the addi-
tional constraint ck = cN−k. Also observe that ωk and
ωN−k = ω−k are each others mirror image in the real
axis (see figure S3.1). They have the same real part,

Re(ωk) = cos
(2πk

N

)
, (S3.18)

and when adding them, the complex part cancels out:
ωk + ω−k lies on the real axis, at the point 2Re(ωk).
This means that

ckωk + cN−kωN−k = 2ckRe(ωk) (S3.19)

is a real number. From (S3.16) we see that the eigen-
values λn consist of many such sums: all complex
parts cancel out and the eigenvalues are real1

Now we can also choose real eigenvectors: the real
part of ωn. After all, if ωn is an eigenvector for the

1The expression for the eigenvalues is slightly different depending
on whether N is odd or even.
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Figure S3.2: The eigenvectors of a symmetric, circu-
lant matrix are discrete cosine functions
with different periods.

real eigenvalue λn, so are ω−n and vn = 1/2(ωn +
ω−n). By the same argument as before, equations
(S3.19) and (S3.18) show that this is a real eigenvector:

vn =
(

1, cos θ, . . . , cos Nθ
)

, θ =
2πn

N
. (S3.20)

This is a discrete cosine function consisting of N
points, where higher n implies in higher frequencies.
This is illustrated in figure S3.2.

Toeplitz is asymptotically circulant The reason cir-
culant matrices are interesting here, is that Toeplitz
matrices can be shown to be asymptotically equiv-
alent to circulant matrices, and that eigenvalues are
preserved. We refer to Gray (2006) for a detailed dis-
cussion of that result. What this implies is that the
eigenvectors of large Toeplitz matrices are well ap-
proximated by those of circulant matrices: sinusoidal
functions. That in turn means that approximately
Toeplitz covariance matrices (which are real and sym-
metric) will have cosine-shaped eigenvectors.

S3.3 PCs of random processes

We want to end by discussing two examples where
Toeplitz covariance structures arise, and we thus
would expect cosine eigenvectors, at least asymptot-
ically.

Weakly stationary process Toeplitz matrices arise
naturally in the study of weakly stationary processes.
These are random processes where the mean is con-
stant over time, and where the covariance does not
change by shifts in time: it only depends on the
distance between two time steps. That is, when
Cov(xi, xj) = K(j − i) is some function of j − i, and
thus results in a Toeplitz covariance matrix.
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Figure S3.3: The autocovariance matrix for an autore-
gressive process ar(1) for two values of ρ.
When ρ → 1 it approximates the discrete
cosine transform.

One example of such a process is a first order au-
toregressive process ar(1), where

xn = ρxn−1 + rn, (S3.21)

where rn is a random step with mean zero and vari-
ance σ2, and we assume x0 = 0. It can be shown
that this process has mean E[xn] = 0 and variance
Var[xt] = 1/1−ρ2 if |ρ| < 1. In that case, the covariance
is

Cov(xi, xj) =
σ2

1− ρ2 · ρ
|j−i|. (S3.22)

This is actually one of the few cases where an analytic
expression for the eigenvectors is known, although it
is rather complex (Rao & Yip, 1990; Ray & Driver,
1970). Interestingly, one can use this to show that for
ar(1) processes, the discrete cosine transform dct-ii
becomes equivalent to the ‘principal component trans-
form’ (Karhunen-Loève transform) as ρ → 1 (Rao &
Yip, 1990, section 3.3.2).

High-dimensional random walk In the limit ρ → 1
one obtains a random walk. Antognini and Sohl-
Dickstein (2018) analyse the principal components of
high-dimensional random walks. We briefly sum-
marise their results. Consider a random walk in RM

with N steps given by

xn = xn−1 + rn (S3.23)

where rn is a random step drawn from a probability
distribution with zero mean and a finite, normalized
covariance matrix. We start from x0 = 0 in RM.

We can express all this as matrix multiplications.
Collect the points xn and steps rn as the rows of the
N × M matrices X and R respectively. Let W be a
N × N matrix with 1’s on the diagonal, −1’s on the
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subdiagonal and zeros elsewhere. This implements
the walking mechanism in the sense that WX = R,
hence

X = W−1R. (S3.24)

To compute the covariance matrix S we need the cen-
tered datapoints x̂n = xn − x̄n. The centering oper-
ation be conveniently expressed as multiplication by
the N × N centering matrix C = I− 1

M J, where J is the
all-ones matrix. This gives

X̂ = CX = CW−1R (S3.25)

and allows us to express the covariance matrix as S =
1
N X̂TX̂. Instead of finding the eigenvectors of X̂TX̂,
we can look for those of X̂X̂T . After all, if u is an
eigenvector for X̂TX̂ with nonzero eigenvalue λ, then
v = X̂u is the corresponding eigenvector for X̂X̂T .

Putting all this together, Antognini and Sohl-
Dickstein (2018) look for the eigenvalues and eigen-
vectors of

X̂X̂T = CW−1RRTW−TC (S3.26)

where we used symmetry of C. Note that this ma-
trix contains the covariance between timesteps, rather
than dimensions. They observe that in the limit of in-
finte dimensionality M→ ∞, we have that RRT tends
to the N × N identity matrix. This allows us to sim-
plify (S3.26) to

X̂X̂T = CW−1W−TC. (S3.27)

Since W is a so called banded Toeplitz matrix, and C
is circulant, the whole expression can be shown to be
asymptotically equivalent to a circulant matrix, mean-
ing that the eigenvectors are cosines. This analysis
can be related to melodic contours, when we consider
a collection of M contours of length N as one high-
dimensional walk through RM.
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