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Data
and representation
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Essen Chinese and German folksongs from
Essen (subsets); phrases.

Densmore: song contours from various
Native American cultures from the
Densmore collections

Chantmotif (neume/word/syllable)
contours from CantusCorpus; phrase and
song contours from GregoBaseCorpus.

Melodic segments represented as
fixed-length vectors of pitches.
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Observation
PCs are cosines
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Principal components of phrases ... and of random walks

Principal components are vectors in the
same space as the data: vector of 50 pitches
which we visualize as contours.

Principal components of melodic
phrases approximate cosine functions
of increasing frequency
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Explanation
Toeplitz covariance
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The covariance matrix roughly
resembles a Toeplitz matrix, which
asymptotically have Fourier basis
functions as eigenvectors.
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Proposal
Cosine contours
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B. Step curve and cosine contours
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D. Cosine contour space
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Cosine contours represent a melodic
contour as a combination of cosine
functions using the discrete cosine
transform.

Near-optimal representation: most variance captured
in few dimensions (like PCA).

Data-independent: contours from different traditions
live in the same low-dimensional space (unlike PCA).

Intuitive and interpretable contour space

Variable level of abstraction: increase the dimension
tomove from the rough shape to the exact melody.
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Case study 1
Visualizing different traditions
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A. Songs in cosine contour space
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Songs of three cultures represented in the cosine

contour space (A) show substantial variability. The

average of all contours in a tradition (B–D) also

illustrates this (thick black lines; dashed lines

highlight one contour).
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Case study 2
Melodic arch hypothesis
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Phrases of German (A) and Chinese (B) songs tend

to bemore descending and arched compared to

random segments from the samemelodies, as visible

from their average contours. This can be quantified

by comparing the first (C) and second (D)

coefficients of their cosine representations.



Cosine
Contours

Abstract • Data • Observation • Explanation • Proposal: Cosine contours
Case study 1 (songs) • Case study 2 (phrases) • Case study 3 (motifs) • Evaluation

Case study 3
Mode classification
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B. tf–idf vector visualized

D. Mode classification results (accuracy)

Responsory Antiphon

ParsonContour repr. Parson CosineCosine

Syllables

Neumes

Words

A. Chant and cosine contours

C. Chant as a walk

52 73 30 50

76 76 35 51

81 59 83 77
0%

100%

w
ei
gh
te
d
av
ge
ra
ge

ac
cu
ra
cy

52 74 30 49

76 79 35 53

81 73 83 83

Motifs used for mode classification in Gregorian

chant. (A) A chant is segmented into motifs derived

from the notation (neumes) or lyrics (syllables,

words). The blue curves show the two-dimensional

cosine contours for those motifs. (B)We discretize

the contour space and represent the chant as a vector

of tf–idf weighedmotif frequencies (‘grid cell

frequencies’). Dots illustrate the nonzero entries of

this vector for the chant shown above. (C) The chant

is now awalk through contour space, but our ‘bag of

motifs‘ ignores order. (D)Using these vectors to

classify mode, we outperform a previous study using
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Evaluation
Optimality
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DCT approximates PCA, the optimal transform, in terms of the

reconstruction error (A) and the explained variance ratio (B). The

reconstruction error is the mean squared error between an contour

and a lower dimensional reconstruction.
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