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ABSTRACT

Melodic contour is central to our ability to perceive and
produce music. We propose to represent melodic contours
as a combination of cosine functions, using the discrete
cosine transform. The motivation for this approach is two-
fold: (1) it approximates a maximally informative contour
representation (capturing most of the variation in as few di-
mensions as possible), but (2) it is nevertheless independent
of the specifics of the data sets for which it is used. We con-
sider the relation with principal component analysis, which
only meets the first of these requirements. Theoretically,
the principal components of a repertoire of random walks
are known to be cosines. We find, empirically, that the
principal components of melodies also closely approximate
cosines in multiple musical traditions. We demonstrate the
usefulness of the proposed representation by analyzing con-
tours at three levels (complete songs, melodic phrases and
melodic motifs) across multiple traditions in three small
case studies.

1. INTRODUCTION

Humans are born with a remarkable sensitivity to melodic
contour. This is dramatically illustrated when newborns cry:
the cries of German babies tend to go down in pitch, but
those of French babies go up, even if falling contours are
physiologically easier to produce [1]. By imitating the in-
tonation patterns of their mothers’ language, babies take the
first steps towards a spoken language—helped by exagger-
ated pitch contours of infant directed speech [2]. Contour
perception remains central to speech, for intonation or even
word distinctions, but is also a key ingredient of human
musicality [3]. Dowling famously argued that melodies are
remembered as two independent parts, a scale and a con-
tour [4]. A scale then functions as a ladder “on which the
ups and downs of the contour where hung.” Indeed, when
listening to novel melodies, contours appear to stand out
more than the exact intervals and influence the perceived
similarity of melodies [5]. That has also motivated studies
of contour in MIR, in particular for measuring melodic simil-
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arity [6]. As we briefly review below, many representations
of contour have been proposed in answer to the recurring
question: how can one best describe melodic contour?

We propose representing melodies as combinations of
cosine functions. This is motivated by the need for a con-
cise, maximally informative representation: how can we
capture as much of the variability in contour data in as few
dimensions as possible? The easiest solution would be to
use a principal component analysis (PCA). In section 4, we
show empirically that the principal components of melodies
do not take arbitrary shapes, but in fact closely approxim-
ate cosines. We then relate this observation to theoretical
results showing that the principal components of certain
random walks are sinusoidal, as a result of a particular co-
variance structure. The proposed ‘cosine contour’ space
thus closely approximates the optimal solution provided
by PCA, but offers several benefits. The key argument for
this representation is theoretical and we leave a systematic
comparison of contour representations for future work. In-
stead we discuss three case studies that demonstrate the
usefulness of cosine contours.

Cosine contours meet several desiderata for contour rep-
resentations. First, a good representation respects the linear
structure of melody and is invariant to transposition and
tempo changes. Second, the representation should be in-
terpretable and intuitive (and, in particular, avoid some of
the shortcomings of polynomial coefficients). Third, the
representation should support variable levels of abstraction,
so that one can interpolate between a broad summary of
the shape, and the exact pitch curve. Fourth, we look for a
broadly applicable and culturally neutral representation: it
should be able to describe contours from different cultures,
or even from different domains (e.g., speech). It should also
be able to handle both audio and symbolic data, although
we only analyze symbolic data here.

2. WHAT IS MELODIC CONTOUR?

Melodic contour is a general description of a melody’s
shape that abstracts away from the particular pitches and
precise rhythms. It has been characterised in many differ-
ent ways. Ethnomusicologists (and composers) have used
contour typologies: small sets of contour types [7]. David
Huron, for example, distinguished nine types of contours
by comparing the initial and final pitches to the average
pitch on the middle part of a melody [8]. When, say, the
initial is above the middle, which in turn equals the final,
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Figure 1. Cosine contours represent a melodic contour
as a combination of cosine functions. (A) This is illustrated
for a short melodic phrase. (B) A piano roll is interpol-
ated to obtain fixed-length vector of MIDI pitches (black
curve). This vector is approximated using a discrete cosine
transform (coloured curves). Increasing the dimensionality,
from, e.g., 1 (blue) to 3 (green) improves the approximation.
(C) The basis functions correspond to simple shapes. This
makes the cosine contour space interpretable, as illustrated
in (D) for the first two dimensions. Every point in this
space defines a contour shape, varying in what we call the
descendingness and archedness. The orange dot represents
the orange contour from (B).

the melody has a ‘descending-horizontal’ contour. Such
a formal typology can be used in MIR [9], but typologies
have also been defined using verbal descriptions or even
drawings [7, 10]. CantoCore, for example, instructs an an-
notator to look for six types: ascending, descending, arched,
U-shaped, undulating and horizontal [11]. Even though
the types are less sharply defined, such typologies have
inspired cross-cultural generalizations such as the melodic
arch hypothesis: the claim that melodic phrases tend to be
arch-shaped or descending [8, 12–14].

In melody extraction from audio, contours are usually
represented by sequences of pitches ordered in time. Vari-
ous contour features derived from this, such as the range
or pitch deviation, have been used in classification tasks
[15–18]. Contours in symbolic data can be similarly repres-
ented as step curves (figure 1B, black line) [19,20]. Parsons
code drastically simplifies a step curve [21]. It describes
the direction of movement from one note to the next (up,
down, or level) and discards interval size and note durations.
Variants between these two extremes have also been used,
by distinguishing various classes of jump sizes [6]. Another

strategy is to focus on salient notes, typically turning points
(maxima and minima), and to discard other notes [7,18,19].
This often requires special handling of ornaments [20], pos-
sibly tailored to the repertoire. Yet another approach con-
siders the relative ordering of all pairs of notes in a melody,
summarized in a matrix. Such combinatorial models in way
expand rather than reduce the representation, break the lin-
earity of the melody and are sensitive to local changes [20].

Finally, one can describe melodies using continuous
functions. Müllensiefen and Wiggins fit a polynomial func-
tion to a step curve and use the coefficients to represent the
contour [20]. The degree of the polynomial is chosen per
phrase, using the Bayesian information criterion (BIC) to
avoid overfitting. Polynomial coefficients are quite difficult
to interpret, however: they change drastically when the de-
gree changes, and can also be sensitive to changes in the
data, especially when the polynomials are not orthogonal
and introduce correlations between the coefficients (collin-
earity). Instead of fitting a function to the contour, one can
also decompose the contour and express it as a sum of (or-
thogonal) basis functions. Velarde and colleagues have for
example used Haar wavelets as basis functions in musical
pattern discovery [22]. The step-like shapes of those wave-
lets are well suited to describe particular melodic patterns,
but make them less suited for describing the overall contour.
An alternative basis of sinusoidal functions is implicit in
Schmuckler’s use of a Fourier analyses to represent melodic
contour [23]. This has been interpreted as measuring the
‘periodic information’ in a melody, and was reported to
correlate with perceived similarity.

3. DATA

With the broad applicability in mind, we analyze music
from several independent traditions. The choice of tradi-
tions was partly motivated by our aim to analyze contours at
multiple levels of description: we expect (different) regular-
ities at different levels. At the highest level, complete songs
can have characteristic shapes, and those shapes may differ
between traditions. At the smaller level phrases may be
subject to the melodic arch hypothesis cited above. Finally,
at the smallest level, melodic motifs could exhibit sequen-
tial structure, for example when melodies in a repertoire
are formed by stringing together melodic motifs (some-
times called centonization [24]). We also analyze random
segments obtained by slicing a melody at random in approx-
imately phrase-length segments, so that their boundaries
usually do not overlap with actual phrase boundaries [25].

One tradition for which all of these levels are directly
available is Gregorian chant, thanks to two recently re-
leased corpora: the CantusCorpus and the GregoBaseCor-
pus [25]. Gregorian chant has been sung in Roman Catholic
churches for well over a thousand years. The close con-
nection between music and text in chant suggests a natural
subdivision of the music into motifs corresponding to words
or syllables. The notation suggests even smaller motifs: it is
based on small figures, called neumes, that represent short
groups of notes [26]. To analyse motif contours, we use
chants from the CantusCorpus (v0.2) with transcriptions



of medieval manuscripts, which include neume boundar-
ies. We focus on the two largest chant genres: antiphons
and responsories. Phrase boundaries are not available in
the CantusCorpus, however, and so for that, we turn to the
GregoBaseCorpus (v0.3) of modern chant transcriptions.
Modern chant notation includes explicit breathing marks
(pausas), which have been used to extract phrases [25].

Phrase markings are also included in the Essen Folksong
Collection [27], from which we analyse phrases from Ger-
man and Chinese folksongs. We focus on the two largest
subsets, ‘Erk’ [28] (9782 contours) and ‘Han’ (7601 con-
tours). 1 At the level of complete songs, we also add music
from the Sioux people made available in the Densmore Col-
lection [29, 30]. In the supplementary material, we include
some further analyses of several other traditions from the
Essen and Densmore collections.

We convert all melodies (be it songs, phrases or motifs)
to step contours by extracting note onsets (in quarter notes)
and pitches (in MIDI semitones). We then interpolate a
step function through these points, from which we sample
# = 100 equally spaced pitches. Those pitches are collected
in vectors x = (G0, . . . , G#−1) (black curve in figure 1A),
which are the basic data analysed in this paper. 2

Our starting representation makes several assumptions
that seem reasonable (and common: [13, 14, 22]) when only
interested in contour. First, we ignored all rests. Second, we
normalize the duration of all contours. Both 3-note motifs
and 30-note songs are represented by vectors of 100 pitches.
The relative durations within that melody are of course re-
tained, so we would still see that contours of short motives
are probably simpler than those of long melodies. Third,
we assume Euclidean distances between melodies. This is
usually problematic, but less so when we are only interested
in contour similarity. Our analyses require that all contours
are embedded in a vector space. Using more sophisticated
measures such as dynamic time warping distance, would re-
quire us to reconstruct a space (e.g., using multidimensional
scaling), and make the analyses less transparent. Finally,
note that we do not center the contours to have mean pitch
0. This is sometimes done to make contours transposition
invariant and more directly comparable [14,22,25]. We will
soon see that our proposed representation elegantly resolves
this problem without requiring centring.

4. PRINCIPAL COMPONENTS OF CONTOURS

In this section, we explore principal component analysis
applied to contours. The goal of PCA is to find a set of
orthogonal axes, the principal components, that contain
most of the variance in the dataset. Note that the principal
components, like the original contours from our data, are #-
dimensional vectors, such that the contours and components
can be interpreted and plotted in the same space.

In figure 2A , we show results from applying PCA on a
large dataset of Gregorian chant (similar results with Ger-

1 Much is unclear about the exact (bibliographic) origins of the Chinese
subset of Essen. This is problematic given its wide use in computational
musicology and deserves further attention from the community.

2 See github.com/bacor/cosine-contours for data, code and supplements.
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Figure 2. Principal components of contours (solid lines)
are roughly cosine shaped (dashed) across different levels
(A). This is a result of the particular structure of the cov-
ariance matrix (B): matrices of this type have Fourier basis
functions as their eigenvectors. This is clearest for phrases
(2) or random segments from melodies (3), here of similar
length as phrases. Crucially, we see the same effect for
simulated, contour-like random walks (4). For complete
songs (5) the effect is less clear, probably due to differences
in typical length (C) and data size. Contours in 1–4 are
from Gregorian chant.

man and Chinese folksongs can be found in supplement
S2). We plot the first four principal components of several
types of melodies: short motifs (syllables), phrases, ran-
dom segments of melodies, and complete songs. We show
responsory syllables from CantusCorpus for the motifs, an-
tiphon phrases from the GregoBaseCorpus and finally all
song contours from GregoBaseCorpus.

Surprisingly, we find that the principal components are
highly similar across most of those data sets, and corres-
pond to well-known contour shapes: descending, convex,
and—perhaps—undulating. This is clearest for the phrases
and random segments. For complete songs the effect is
weaker, especially for even smaller datasets (see the sup-
plement S2). Besides small data sizes, the fact that songs
are much longer also plays a role (see fig. 2C). We also
applied the analysis on simulated random walks approxim-
ating phrases: we draw the number of notes from a similar
length distribution, normalize the duration and then sample
# = 100 pitches as before (see supplement S1 for details).
Interestingly, the pattern is now even clearer, suggesting
there must be a mathematical explanation.

To give that explanation, we need to first describe PCA

more formally. We consider a collection of " contour
vectors x< of length # . Denote the sample mean by x̄ =

1
"

∑
< x< and the centered data by x̂< = x< − x̄. The

first principal component of the dataset is then defined as

https://github.com/bacor/cosine-contours


a normalized vector u1 ∈ R� for which the projected data
{u)1 x< : 1 ≤ < ≤ "} has maximal variance. It can
be shown (e.g., [31]) that this is the case when u1 is an
eigenvector corresponding to the largest eigenvalue _1 of
the covariance matrix

S =
1
"

"∑
<=1
(x< − x̄) (x< − x̄)) , (1)

so that Su1 = _1u1. It follows that the projected variance
is given by _1, the largest eigenvalue. The other principal
components similarly emerge as the other eigenvectors of
the covariance matrix.

The covariance matrices (figure 2B) for both random
walks and our empirical data have a particular structure:
they roughly resemble Toeplitz matrices, which have fixed
values along each of their diagonals. Such covariance struc-
tures are frequently encountered in spatial or temporal data,
when the covariance decreases with the distance between
the points [32–34]. With the empirical contours that appears
to be the case (and for random walks it is there by design):
there is higher correlation between successive pitches and
lower correlation between distant pitches. As a result, the
higher covariances are concentrated along the diagonal.
Again, this clearest for the phrases and random segments.
For motifs we see some deviations: two ‘blocks’ in the cov-
ariance matrix, and corresponding jumps half way through
the principal components. This is easily explained by the
fact that motifs often span only two notes. In that case, all
pitches in the first half of the contour are then perfectly
correlated, as are pitches in the final half. Crucially, despite
such deviations from a perfect Toeplitz structure, the prin-
cipal components are still well-approximated by cosines.

If you let a Toeplitz matrix grow in size, it asymptotically
tends towards a circulant matrix, preserving properties such
as eigenvalues and eigenvectors along the way [32]. Circu-
lant matrices have exactly the same values in every row, but
rotated one step to the right with respect to the previous row.
This has the surprising result that all circulant matrices have
the same eigenvectors: basis vectors of the discrete Fourier
transform. For a real and symmetric matrices, like covari-
ance matrices, this results in cosine-shaped eigenvectors of
increasing frequency—exactly what we see in figure 2. We
discuss all of this in more detail in the supplement S2. In
sum, because of a Toeplitz-like covariance structure, the
principal components of melodic contours will tend to look
like cosine functions.

5. COSINE CONTOURS

Next we turn this observation, and its explanation, into a
proposal for a new contour representation. The idea is to
approximate the principal components by cosine functions
and then project the contours on those first few cosines to
obtain a low-dimensional representation. This is exactly
equivalent to taking a discrete cosine transform (DCT) of
the contour [35].

Formally, consider a collection of contours of length #
as before. We approximate the :-th principal component
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Figure 3. DCT approximates PCA, the optimal transform,
in terms of the reconstruction error (A) and the explained
variance ratio (B). The reconstruction error is the mean
squared error between an contour and a lower dimensional
reconstruction. Note that data corresponds to figure 2, and
that we did not discard the first component 20 of the DCT in
this figure.

u: by a vector v: =
(
E: (0), . . . , E: (# − 1)

)
whose entries

are given by the cosine function 3

E: (=) = U: · cos
c(2= + 1):

2#
. (2)

Here U0 = 1/
√
# and U: =

√
2/# for : ≥ 1 are normaliz-

ing constants ensuring that v: has unit norm. The projection
of a contour x = (G0, . . . , G#−1) on v: is then given by the
inner product 2: = v)

:
x. Expanding this gives the usual

definition of the discrete cosine transform (DCT-II):

2: =

#−1∑
==0

G=U: cos
c(2= + 1):

2#
. (3)

Conversely, the contour can be reconstructed from the coef-
ficients 2: using the inverse transform G= =

∑#−1
:=0 2:E: (=).

Using only � < # coefficients, we define our low-
dimensional cosine contour representation as �� (x) =

(21, . . . , 2�). Note that we deliberately discard 20. This
coefficient corresponds to a flat line and describes the over-
all pitch height of a contour: exactly what we need to get
rid of to make the contour transposition invariant. In this
way we resolve the centering of contours discussed above.

Why use this representation instead of principal com-
ponents? Indeed, a principal component projection (also
known, in this context, as the Karhunen-Loève transform),
is optimal in several ways [35, 37]. Not only does it decor-
relate the data, it also packs most variance in the first few
transform coefficients (sometimes called energy compac-
tion), and minimizes the reconstruction error when using
only a few coefficients. However, the transformation de-
pends on the data. Concretely, the principal components
of German phrase contours differ from Chinese ones. Any
choice for using one of the two is arbitrary. In contrast,
the DCT is a principled, neutral solution—that approxim-
ates the optimal transform. In fact, the DCT was originally
introduced for similar reasons [35], and was then found
to empirically approximates PCA well in domains ranging
from image to audio [37]. The current results suggest that
the same applies for melodies.

3 These basis functions correspond to the most popular version of the
discrete cosine transform, DCT-II, for which fast implementations are
widely available; others would have been possible [36].
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Figure 4. Songs of three cultures represented in the
cosine contour space (A) show substantial variability. The
average of all contours in a tradition (B–D) also illustrates
this (thick black lines; dashed lines highlight one contour).

6. EVALUATION AND CASE STUDIES

We evaluate proposed contour representation by comparing
it to a principal component transformation, to demonstrate
that representation is close to the optimum. We further
designed three case studies to illustrate its usefulness at
the levels of (1) song, (2) phrases and (3) motifs. The
case studies show that the representation is musicologically
meaningful, as it allows visualization of variation (1), a
quantitative evaluation of constraints on variation (2), and
accurate classification into traditional categories (3). For
simplicity, we only look at two dimensional representations
in these case studies, but higher dimensions may be useful
in practice.

6.1 Optimality

To empirically verify the claim that the DCT approximates
the optimal PCA transform, we compute the reconstruction
error and the explained variance ratio using the same data
as before. The reconstruction error is measured as the mean
square error between a contour and its �-dimensional re-
construction, using either the principal components (PCA)
or cosines (DCT) as basis functions (so for � = # , the recon-
struction is guaranteed to be perfect). Figure 3A shows that
the reconstruction errors of DCT closely approximate that of
PCA. For the shorter contours (motifs and phrases), the er-
ror very rapidly decreases, indicating that low-dimensional
representations are already effective. Indeed, to explain
95% of the variance using cosine contours, you need 1 di-
mension for motifs, 9 for phrases and 61 for songs (this is
sometimes called the effective dimensionality [38]). 4

6.2 Case Study 1: Visualizing different traditions

Low dimensional representations of song contours are not
likely to be very informative, yet we find that some tradi-
tions can be somewhat distinguished in just two dimensions.

4 However, note that Moore et al [38] show that high-dimensional
random walks can falsely appear to have a low effective dimensionality.
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Figure 5. Phrases of German (A) and Chinese (B) songs
tend to be more descending and arched compared to random
segments from the same melodies, as visible from their
average contours. This can be quantified by comparing
the first (C) and second (D) coefficients of their cosine
representations.

Figure 4 shows song contours from German, Chinese and
Sioux songs. Sioux songs have a striking overall shape
(subplot D), often strongly descending, which is reflected
in the distribution of contour shapes. Similarly, German
songs appear to be more arch-like than songs from the other
traditions.

6.3 Case Study 2: The melodic arch hypothesis

In a second case study, we look at the melodic arch hypo-
thesis, which states that phrases tend to be arch-shaped or
descending [8] (see figure 5A, B) in a way that it becomes
much easier to test (cf. [14]). We observe that the first com-
ponent 21 of a cosine representation roughly measures the
descendingness of the contour, and, similarly, that −1 · 22
measures the archedness. The melodic arch hypothesis can
thus be reformulated as stating that 21 and −22 are larger for
phrases than for random segments of the melodies (cf. [25]).
Comparing Chinese and German phrases, we find that all
are significantly (? � 0.001) more descending and arched
than the corresponding random segments (see figure 5C, D).
This demonstrates that the coefficients of the cosine contour
representation are musicologically meaningful.

6.4 Case Study 3: Mode classification

In the final case study, we evaluate the performance of this
contour representation on a task: mode classification in
plainchant. Gregorian chant uses a system of eight modes:
Dorian, Phrygian, Lydian and Mixolydian, each in the two
flavours plagal and authentic. Modes differ not only in their
scales, but also in their melodic movement. Plagal melodies
tend to move lower than authentic ones, closer around the
tonal center. In a recent paper we suggest that the mode of
Gregorian chant can be predicted from contours alone, in
that case using a Parsons code contour representation [39].
We sliced up chants in sequences of motifs corresponding
to the notational units (so called neumes) or textual units:
all notes set to one syllable of the text would form a unit,
and similarly for words. Next, we represented chants as
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Figure 6. Motifs used for mode classification in
Gregorian chant. (A) A chant is segmented into motifs
derived from the notation (neumes) or lyrics (syllables,
words). The blue curves show the two-dimensional cosine
contours for those motifs. (B) We discretize the contour
space and represent the chant as a vector of tf–idf weighed
motif frequencies (‘grid cell frequencies’). Dots illustrate
the nonzero entries of this vector for the chant shown above.
(C) The chant is now a walk through contour space, but
our ‘bag of motifs‘ ignores order. (D) Using these vectors
to classify mode, we outperform a previous study using a
Parsons code for the smaller motifs neumes and syllables.

vectors of motif or term frequencies (tf), where each entry
was weighted by the inverse document frequency (df; the
number of chants or documents containing that motif). A
linear support vector machine was then trained on these
tf–idf vectors to predict the mode.

We repeat these experiments using a two-dimensional
cosine representation for the motifs rather than a Parsons
code. There is one technical problem: whereas cosine
contours are continuous, the tf–idf model requires a discrete
vocabulary of motifs. We therefore discretize the cosine
contour space to a grid, and effectively treat every chant as
a sequence of grid-cells (fig. 6C). All in all, this introduces
two new parameters to the experiment: the dimensionality
of the cosine contour and the resolution of the grid. In this
case study, we do not tune these parameters and focus on
two dimensional contours, discretized to a grid between
−20 and 20 with a grid size of 1. For ease of reading, the
figure 6B shows the grid only from −10 to 10.

The results are summarized in figure 6D. We see an
interesting pattern: the cosine contours outperform the ori-
ginal results for small motifs such as neumes and syllables,

but not for words, which are much longer motifs. This
seems to makes sense: two dimensional cosine contours are
a fairly crude approximation of those longer contours, but
may reasonably approximate short motifs.

7. DISCUSSION AND CONCLUSIONS

This paper proposed a novel representation for melodies
using the discrete cosine transform. Observing that the
principal components of melodies tend to be shaped like
cosines, this representation approximates the optimal rep-
resentation in the sense that it packs most variance in a
few dimensions. First, the cosine representation is easily
interpretable, since it presents contours as a linear combina-
tion of cosine functions with intuitive shapes. Second, by
changing the dimensionality, the level of abstraction of the
contour can be varied, allowing arbitrary small reconstruc-
tion error by including more and more dimensions. Third,
this representation allows one to map contours at multiple
levels, from motifs to songs, to one common space. The
cosine representation thus creates a common ground for
comparing contours across traditions and levels. That is
possible as, fourth, the representation is independent of the
data, and in that sense culturally neutral.

The observation that principal components of spatial and
temporal data can have sinusoidal shapes is not novel, but
does not appear to be widely known. Indeed, the sinusoidal
shapes have been interpreted as genuine effects, rather than
mathematical artefacts. For example, one study interpreted
gradients in the principal components of human genetic
variation across the world as evidence for certain migration
events in human history [40]. Closer inspection revealed
that those gradients were sinusoidal ‘artefacts’ analogous
to those reported in the present paper [33]. Closer to MIR,
it has been observed that the training trajectories of deep
neural networks have sinusoidal principal components [41],
for the same reason. Again, a detailed analysis [34] revealed
these were artefacts, but accurately reflecting the behaviour
of high-dimensional random walks [34, 38]. We hope this
paper helps increasing the awareness of this phenomenon.

The present work only begins to explore this new con-
tour representation and raises many further questions. One
particularly promising possibility is the application to audio
data. We only explored symbolic data, but the proposed
representation lends itself well for applications on acoustic
data. One application we hope to explore further is the
analysis of speech intonation using the cosine contour rep-
resentation. A possible other avenue would be the analysis
of folk song recordings, of which vast collections have been
collected. Folk song researchers have often used contour
in some way to organize repertoires [7], and this repres-
entation may contribute to that. Contour typologies have
also be used in cross-cultural comparisons (see e.g. [12]).
Many typologies have been proposed [7, 8, 10, 11], but they
have not been systematically evaluated, and we think the
proposed representation will be valuable there.
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