Bayesian Language Games

Unifying and evaluating agent-based models of horizontal and vertical language evolution

Bas Cornelissen

The (Little) Tower of Babel by Pieter Bruegel the Elder (c. 1563) oil on panel; 60 cm × 74.5 cm; Museum Boijmans Van Beuningen, Rotterdam

THE CENTRAL PROBLEM Sound does not fossilise.

archeology biology anthropology The origins of language? cognitive linguistics science computational modelling

unifying and evaluating agent-based models of cultural language evolution

NO LANGUAGE

LANGUAGE

cultural cultural evolution

biological evolution

time

Iterated learning

Every generation learns the language spoken by the previous generation.

Vertical transmission across generations

>	n-ere-ki n-ehe-ki n-eke-ki	I-ere-ki I-aho-ki I-ake-ki	renana r-ene-ki r-ahe-ki	Compositional language Meaning of a signal determined by meaning
		l-aho-plo	r-e-plo r-eho-plo r-aho-plo	of parts Cultural processes (transmission &
	n-eho-pilu	I-ane-pilu I-aho-pilu I-aki-pilu	r-eho-pilu	communication) pressure for compositional languages

Population negotiates a shared convention via local interactions:

- 1. Select random speaker & hearer
- 2. The hearer utters a word.
- 3. Both agents 'align' languages

Minimal NG

Every agent can invent, add and remove words to its vocabulary

Failure

SPEAKER	HEARER
hat	lamp
ship	hat
lamp	

Lateral inhibition

After success, decrease the scores of competing words

Dynamics of the minimal NG

Three stages lead to the convergence to a single word:

- 1. Invention of words
- 2. Spread through population
- 3. Elimination of words

Cultural process of social negotiation leads to shared emergence of a convention

linguistics

The origins of language?

cognitive science

computational modelling

VERTICAL iterated learning

unifying and evaluating agent-based models of cultural language evolution

HORIZONTAL naming game

VERTICAL iterated learning

HORIZONTAL naming game

VERTICAL iterated learning

HORIZONTAL naming game

BAYESIAN LANGUAGE GAME

- shared formalism
 population model

1. Shared (Bayesian) formalism 2. Population model

 $p(\text{lang} \mid \text{data}) \propto p(\text{data} \mid \text{lang}) \cdot p(\text{lang})$ probability of biases of adopting a language the learners

1. Shared (Bayesian) formalism 2. Population model

$$p(\text{lang} \mid \text{data}) \propto p(\text{data} \mid \text{lang}) \cdot p(\text{lang})$$

probability of language after previous interaction

1. Shared (Bayesian) formalism

2. Population model

VERTICAL transmission chain

HORIZONTAL homogeneous mixing

BOTH random walk

LIFE EXPECTANCY **y**

The age at which a speaker dies

A language is a distribution over words

(or e.g. linguistic features)

- Lineage specificity
- Reflection of the bias (rather than convergence to the prior)
- Language stability

On average, the Bayesian Naming Game reproduces the innate biases.

Reminiscent of "wide but constrained variation" (e.g. colour terms)

Regier et al. (2015). DOI 10.1002/9781118346136.ch11

Different strategies

But why this?

production algorithm

p(data | lang)

Shouldn't we expect this?

Strategies

One can vary the 'production strategy' and 'language strategy' sample or maximise

Different strategies

Different strategies

A. Iterated learning $(\gamma = 1)$

B. Naming Game $(\gamma = \infty)$

C. Quick turnover (γ = 10)

D. Medium turnover (γ = 100)

 \longrightarrow Aggregate language $\bar{\pi}$

Expected language π

External language ψ

unifying and **evaluating**agent-based models of cultural
language evolution

Take home messages

Iterated learning and the naming game closely related:

language evolution through frequency tracking and innate biases.

Lineage-specific languages reflecting innate biases in the Bayesian naming game.

Realistic?

unifying and **evaluating**agent-based models of cultural
language evolution

The (Little) Tower of Babel by Pieter Bruegel the Elder (c. 1563) oil on panel; 60 cm × 74.5 cm; Museum Boijmans Van Beuningen, Rotterdam