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Abstract. Human language is one of the most intricately structured

communication system in the natural world. Over the last decades re-

searchers in various fields have developed the idea that languages are

primarily shaped by processes of cultural evolution, and that these pro-

cesses can account for the structure of language. Computational mod-

els play an important role in their arguments. This thesis asks what those

models can teach us about cultural language evolution. To that end, the

first part of this thesis connects the two main branches of agent-based

models, naming games and iterated learning, in a new Bayesian language

game. The game gives a unified view on the field and suggests a charac-

terisation of the behaviour exhibited by the main agent-based models of

language evolution. It moreover addresses shortcomings of earlier mod-

els. We find lineage-specific languages reflecting the innate biases of the

learners. The second part of this thesis aims to compare that behaviour

with the evolution of actual language. Numeral systems are argued to

be an ideal empirical test case for models of cultural language evolution.

We revisit Hurford’s pioneering work on the modelling of the emergence

of numeral systems, and discuss some further results.

Preface. Dear reader, I will keep it short. As I write this, my mother is

preparing a delicious meal. And, as you will understand, I cannot keep my

parents waiting. They haven’t seen me much over the last few months,

and I’m afraid they are not the only ones. Let me just say thanks to all

those wonderful, warm, and loving people that make life so much fun. Oh

and Jelle, of course, thanks for putting up with me ;-)
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Iterated
Learning
Could it be that structure in language emerges because it is transmitted

from one generation to the next? Is cultural transmission the force shap-

ing language? Early models of iterated learning suggested precisely that.

Bayesian models improved the early work by separating the biases of the

learners from the effects of transmission. But they also indicated that

cultural evolution only allows the prior biases to surface, a result that

sparked a small controversy. The ‘convergence to the prior’ was shown to

break down in more complicated populations, again creating room for the

shaping force of cultural evolution. This chapter introduces the iterated

learning tradition and ends with a list of desiderata for models of cultural

language evolution. The list serves as a guide to the remainder of this

thesis.

. . Early iterated learning models . . . . . . . . . . . . . . . . . . . . .

. . Iterated learning with Bayesian agents . . . . . . . . . . . . . . . . .

. . Convergence to the prior . . . . . . . . . . . . . . . . . . . . . . . .

. . Convergent controversy . . . . . . . . . . . . . . . . . . . . . . . .

. . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



F . In the iterated learning
model, the language produced by
the previous generation serves as
the primary linguistic data for the
next.

Adapted from Kirby ( ).

Language
(internal)

Utterances
(external)

Generation Generation Generation

Early iterated learning models

The utterances alone are not
enough, unless you assume the
child can mind-read. Instead
meaning-signal pairs are often
communicated.
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In fact, various different bot-
tlenecks have been put forward;
see Cornish ( , ch. ) for an
overview and a discussion of the
empirical findings regarding the
presence of such a bottleneck.



Iterated learning with Bayesian agents

The language algorithm is usu-
ally called a learning algorithm.
Since that terminology causes
some confusion in chapter , I
use the term language algorithm.
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F . Exponentiating a distri-
bution moves the probability mass
towards the mode. Illustrated for
three different distributions.
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F . Emergence of compo-
sitionality in the Bayesian iterated
learning model of Griffiths and
Kalish ( ). On the left, the lan-
guage used in every generation with
H one of holistic languages and
C – the compositional languages.
On the right the relative frequency
of every language up to a certain
time . These relative frequencies
converge to the prior (orange).
Larger bottlenecks (subfigures
A–C) slow down convergence.

WebPPL simulation with
= . , = . and samplers
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F . Different Markov chains
hidden in the Bayesian iterated
learning model, and to which sta-
tionary distribution they converge
(right).

Figure adapted from Griffiths and
Kalish ( ).
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This constraint on languages
has a purely mathematical mo-
tivation: it is precisely what is
needed to factorise the normalis-
ing constant in the posterior.
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I found their paper is a
bit sketchy on the details of their
simulations, but these conclu-
sions follow directly from Grif-
fiths and Kalish ( ) and as
far as I can see apply equally
to Kirby, Dowman, and Griffiths
( ).
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Naming
Games
How can a population negotiate a shared language without central coor-

dination? This is the terrain of naming games, the second class of agent-

based models. In local, horizontal interactions, agents ’align’ their lan-

guage until they reach coherence. We discuss several alignment strate-

gies, some of which return in later chapters, and conclude with a proof

suggesting that a stable, single-word language always emerges. Themodel

used therein is the stepping stone for the next chapter, where we connect

naming games to Bayesian models of iterated learning.

. . The basic naming game . . . . . . . . . . . . . . . . . . . . . . . .

. . The minimal strategy . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Lateral inhibition strategies . . . . . . . . . . . . . . . . . . . . . .

. . Proof of convergence . . . . . . . . . . . . . . . . . . . . . . . . .

. . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



The basic naming game

‘Gender’ is only introduced to
convieniently disambiguate the
intended agent: the speaker
(she) or the hearer (he). This
even puts the ‘men’ in the role
of listener — which I belief is
sometimes regarded to be the
appropriate role.



A. Failed communication

=⇒

Gavagai Spam Gavagai Spam
Cofveve Foo Cofveve Foo
Spam Spam Gavagai

B. Successful communication

=⇒

Gavagai Spam Spam Spam
Cofveve Foo
Spam

F . The updates of the min-
imal naming game illustrated. If
communication fails, the hearer
adds the word uttered by the
speaker (bold) to its vocabulary.
After a success, both empty their
vocabularies and keep only the
communicated word.

Figure inspired by Wellens ( ).

The minimal strategy
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F . The dynamics of the
minimal naming game. An sharp
transition leads to convergence and
the emergence of consensus.

Results shown for = ;
avg. of runs, std. shaded.
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T . Parameter settings for
four different strategies, whose be-
haviour is shown in figure . . Note
that equivalent parametrisations
also exist; see main text for details.

inc inh dec init max

. ∞

. . . . .

. . . . .
∞

Lateral inhibition strategies

Wellens ( ) only uses ’s in
( , ), but this general formula-
tion allows the inclusion of the
frequency strategy.

, , , , .

=
= = =

=



F . Comparison of the four
naming game strategies in table
. . The the unique word count and

communicative success show that
all strategies reach communicative
success. The stable language
for the frequency strategy is not
efficient.

Results shown for = ;
avg. of runs. success is a rolling
average over a centered window of

iterations.

That is, for the basic naming
game, since Wellens ( ) finds
that in more complicated games,
subtle update mechanisms can
be beneficial.

Proof of convergence

, . . .



F . A discrete distribution
over three values corresponds to a
point in the -simplex, a triangular
slice of R (left). The simplex can
be embedded in the plane (middle),
so that every point in the triangle
determines a distribution (right).
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Queue of length Queue of length

F . All possible frequencies
of words in a queue of length
(left) and (right) form a discrete
subset of the simplex. The corre-
sponding relative frequencies are
the ‘languages’ used by agents
in the sampling-response model.
Frequencies ( , , ) are labeled

.

Figure inspired by (De Vylder and
Tuyls ).
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Bayesian
Language
Games
Few studies, it seems, have tried to bridge the gap between iterated learn-

ing and naming games. In this chapter I argue that Bayesian models of

iterated learning can naturally be connected to naming games in the form

of a new, Bayesian language game. This model of cultural evolution gives

rise to a stable, lineage-specific language that reflects innate biases, but

not faithfully so. With a proposed population structure, the game interpo-

lates between an iterated learning model and a naming game and more-

over incorporates a wide range of strategies. The model, in short, brings

a unified perspective on two agent-based modelling paradigms and ad-

dresses some of the desiderata formulated in chapter .

. . The Bayesian naming game . . . . . . . . . . . . . . . . . . . . . .

. . The Dirichlet-categorical naming game . . . . . . . . . . . . . . . . .

. . Phenomenology of the naming game . . . . . . . . . . . . . . . .

. . Language and production strategies . . . . . . . . . . . . . . . . . .

. . Bayesian language games . . . . . . . . . . . . . . . . . . . . . . .

. . Characterising Bayesian language games . . . . . . . . . . . . . . .

. . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



I counted references to pa-
pers coming from the group of
either Kirby ( ) or Steels ( ).
All serious papers in either tra-
dition cite extensively from the
work of the respective groups.

Admittedly, Tamariz and Kirby
( ) does cite the experimen-
tal semiotics literature. But
then again, it does not include
Steels under the heading ‘naming
games’ (table ), under which we
do find some papers from Kirby’s
group.

The Bayesian naming game

, . . . ,
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F . The Dirichlet distribution
for various parameter settings. The
Dirichlet can be parametrised by a
point in the simplex and a scalar
. The mean of the distribution is

determined by and influences
the variance. The first row (A–D)
demonstrates the effect of while
fixing = ( / , / , / ); the second
row (E–H) the effect of while
keeping = fixed. Note that
with · = ( , , ) (subfigure B)
one gets a uniform distribution over
the simplex.

Figure produced us-
ing code by Thomas Boggs at
gist.github.com/tboggs/
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The Dirichlet-categorical naming game
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internal
language

production

beliefs
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algorithm
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expected
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observations
or experience
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external language

F . Illustration of the
Bayesian naming game with all
relevant concepts. See main text
for details.
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did not participate in round .
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F . Two runs of the Bayesian
Naming Game. A. The expected
languages of agents (thin black
lines) first diverge but eventually
stabilise. They always reflect the
bias (orange), B. Utterances (dots)
at every time plotted over a moving
average of time steps. C.
The external language matches the
aggregate language. See main text
for more details.
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Note that the colours are ‘nor-
malised’ in every column, such
that the in every column the least
frequent word is white and the
most frequent ones the darkest
blue.

¯

When writing this, I realise
that variants can of course be
defined. In fact, I had done so
‘before’, in chapter . Future
work could transfer those mea-
sures to the Bayesian naming
game.
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F . The Dirichlet-categorical
name converges to a stable, co-
herent language. A. The distance
between expected languages van-
ishes, but the aggregate language
deviates from the bias. B. Co-
herence initially drops, but then
increases to . The black line illus-
trates the reflection of the bias.

= , = , = = ,
= ∞, =

F . Effects of the language,
population and bottleneck size on
convergence time, probed by the
critical points max and int. See
main text for details.

Parameters are fixed at
= , = and = , if they

are not varied. = = , = ∞,
= .

=

( , . . . , ) (¯, ˆ )

∝ .

∝ −.

∝ −



F . A. Different runs of
cultural evolution result in different
languages (thin black lines) that
all reflect the bias (orange) in the
sense that the cultural process
reproduces the bias on average,
over many runs. This is illustrated
with six differently shaped biases.
B. How well the languages reflect
the bias is regulated by the strength
of the bias ( ).

/ = , = , = ,
= = , = ∞, =

= ·

Language and production strategies



F . Exaggerating (or ex-
ponentiating) a Dirichlet distribu-
tion shrinks the variance and as
grows, the mean approaches the
mode.
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>But then again, this proba-
bly happens because agents
do not take into account that
the language comes from mul-
tiple sources (cf Ferdinand and
Zuidema ; Smith ) and
is discussed later.
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Bayesian language games

:

More precisely, the random
walk is a Markov chain over the
population with uniform station-
ary distribution.

I have not been able to iso-
late systematic differences be-
tween homogenous mixing and
random walks in the Bayesian
language game, although future
work could investigate this more
systematically



F . The proposed transmis-
sion model, a random walk through
the population, combines the trans-
mission chains used in iterated
learning with the homogeneous
mixing from the naming game.

Iterated learning Naming Game Bayesian Naming Game

F . Different hazard func-
tions. The more realistic (continu-
ous/discrete) Weibull hazard is bet-
ter approximated by a degenerate
than a constant hazard function.

:

/



Here too, I have to leave it to
future work to systematically as-
sess the impact of the different
models of population turnover.

Characterising Bayesian language games
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F . Typical outcomes of
the Dirichlet-Categorical language
game for the extreme strategies
(sample–sample, –sample,
sample– , – ) in pop-
ulations with immediate turnover
( , iterated learning, = ), no
turnover ( , naming game, = ∞)
and two intermediate turnovers
( and ). See the main text for a
discussion.
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F . Gradual language
change in the Bayesian language
game for a particular choice of pa-
rameters. The effect seems brittle:
slightly different parameter set-
tings can give the kind of behaviour
shown when = ∞.
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I unfortunately only became
aware of this while writing up
the results and time does not
allow me to include an in-depth
discussion.





Numeral
systems
Models of cultural language evolution are seen to be ecologically valid,

primarily because their conclusions are reproducible in equivalent labora-

tory experiments. More direct comparisons seem vital, and this chapter

proposes numeral systems as a test case. Various reasons are given: re-

constructions of their development have been proposed, lots of empirical

data are available, the design space is vast, cognitive mechanisms well-

studied and finally, numerals are simple enough to be easily modelled.

The next chapter addresses early attempts at modelling the cultural evo-

lution of numeral systems.

. . Balancing expressivity and simplicity . . . . . . . . . . . . . . . . . .

. . An introduction to numeral systems . . . . . . . . . . . . . . . . . .

. . The evolution of numeral systems . . . . . . . . . . . . . . . . . . .

. . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Balancing expressivity and simplicity



Results of Experiment 1. The results of our first experiment, involv-
ing 4 separate diffusion chains of 10 participants each, are shown in
Fig. 2. Each of these chains was initialized with a different random
language. There is a clear and statistically significant decrease in
transmission error between the initial and final generations (mean
decrease 0.748, SD ! 0.147; t (3) ! 8.656; P " 0.002). This decrease
confirms the first of our predictions: the language is adapting to
become increasingly transmissible from generation to generation.
Indeed, toward the end of some chains the language is transmitted
perfectly: these participants produced exactly the same strings for
every meaning as their predecessor, although they had not been
exposed to the strings associated with half of those meanings.

How is this adaptation possible? Is any structural evolution of the
language taking place as in the second of our 2 predictions? As
Table 1 shows, the number of distinct strings in each language
decreases rapidly. The initial random languages are completely
unambiguous: every meaning is expressed by a distinct signal. The
transmission process cumulatively introduces ambiguity as single
strings are re-used to express more and more meanings. In other
words, the languages gradually introduce underspecification of
meanings. Clearly, the reduction in the number of strings must
make a language easier for participants to learn, but the reduction
alone cannot account for the results we see. For example, the
reduction does not explain how, in some chains, participants are
able to produce the correct signal for every meaning, including
meanings drawn from the UNSEEN set.

The answer to this puzzle lies in the structure of the languages.
The initial random language is, by definition, unstructured: nothing
in the set of signals gives any systematic clue to the meanings being
conveyed. The only way to learn this language is by rote. Equally,
if a language is randomly underspecified, then rote learning is the
only way it can be acquired. For example, if the same signal is used
for a black spiraling triangle and a red bouncing square, then a
learner must see this signal used for both of these meanings to learn

it. Because we deliberately hold items back from the SEEN set, rote
learning for all meanings is impossible. For learners to be able to
generalize to unseen meanings successfully, there must be system-
atic underspecification.

We can observe exactly this kind of structure evolving by
examining a language as it develops in the experiment. For example,
by generation 4 in 1 of the diffusion chains, the string tuge is used
exclusively for all pictures with an object moving horizontally. The
distribution of the other strings in the language is more idiosyncratic
and unpredictable at this stage. By generation 6, poi is used to refer
to most spiraling pictures, but there are exceptions for triangles and
squares. Blue spiraling triangles or squares are referred to as tupin,
and red spiraling triangles or squares are tupim. In the following
generation, these exceptional cases are reduced to the blue spiraling
triangle and the red spiraling square. By generation 8 (shown in Fig.
3), and also for generations 9 and 10, the language has settled on
a simple system of regularities whereby everything that moves
horizontally is tuge, all spiraling objects are poi, and bouncing
objects are divided according to shape.

It is precisely because the language can be described by using this
simple set of generalizations that participants are able to label
correctly pictures that they have never previously seen. This gen-
eralization directly ensures the stable cultural transmission of the
language from generation to generation, even though each learner
of the language is exposed to incomplete training data.
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Fig. 2. Transmission error and a measure of structure by generation in 4 chains. a shows the increase in learnability (decrease in error) of languages over time. b shows
structure in the languages increasing. The dotted line in b gives the 95% confidence interval so that any result above this line demonstrates that there is a nonrandom
alignment of signals and meanings. In other words, structure in the set of signals reflects structure in the set of meanings. In 2 cases, this measure is not defined and
therefore is not plotted (see Methods). The language discussed in the paper is circled.

Table 1. Number of distinct words by generation in the
first experiment

Generation 0 1 2 3 4 5 6 7 8 9 10

! Chain 1 27 17 9 6 5 4 4 2 2 2 2
" Chain 2 27 17 15 8 7 6 6 6 5 5 4
‚ Chain 3 27 24 8 6 6 5 6 5 5 5 5
# Chain 4 27 23 9 10 9 11 7 5 5 4 4

Symbols correspond to those in Fig. 2.

tuge tuge tuge
tuge tuge tuge
tuge tuge tuge
tupim tupim tupim
miniku miniku miniku
tupin tupin tupin
poi poi poi
poi poi poi
poi poi poi

Fig. 3. An example evolved language in the first experiment. This language
exhibits systematic underspecification, enabling learners to reproduce the whole
language from a fragment.
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EV
O

LU
TI

O
N

PS
YC

HO
LO

G
Y

Our structure measure confirms that the languages evolve to
become more structured. As can be seen in Fig. 2b, significantly
nonrandom structure in the mapping from meanings to signals
emerges rapidly. Furthermore, the languages produced by the final
generation are significantly more structured than the initial lan-
guages (mean increase 5.578, SD ! 2.968, t (3) ! 3.7575, P " 0.02).

Languages in this experiment are evolving to be learnable, and
they are doing so by becoming structured. This development of
structure confirms our hypothesis regarding the cultural evolution
of language. However, we are interested in whether it would be
possible for a language to evolve that is learnable and structured but
also expressive, i.e., a language that would be able to label meanings
unambiguously. Such a language cannot rely on systematic under-
specification of meanings but instead must find some other means
of gaining structure.

Design of Experiment 2. Accordingly, in the second experiment we
made a single minor modification: we ‘‘filtered’’ the SEEN set
before each participant’s training. If any strings were assigned to
more than 1 meaning, all but 1 of those meanings (chosen at
random) was removed from the training data. This filtering effec-
tively removes the possibility of the language adapting to be
learnable by introducing underspecification: filtering ensures that
underspecification is an evolutionary dead-end. This process, al-
though artificial, is an analogue of a pressure to be expressive that
would come from communicative need in the case of real language
transmission.

Results of Experiment 2. As expected, under the modified regimen,
the overall number of words in participants’ output remains com-
paratively high throughout the experiment, as shown in Table 2. Fig.
4a shows how transmission error changes as the language evolves.
Once again, it is clear that the languages are becoming more
learnable over time (mean decrease 0.427, SD ! 0.106, t (3) !
8.0557, P " 0.002) although it is not possible to introduce the kind

of underspecification seen in Experiment 1. Furthermore, it is clear
from Fig. 4b that, as in Experiment 1, the languages are becoming
increasingly structured over time (mean increase, 6.805, SD !
5.390, t (3) ! 2.525, P " 0.05). Because filtering rules out the
generalizations that emerged in the previous experiment, a differ-
ent kind of structure that does not rely on underspecification must
be emerging.

If we examine the languages at particular stages in their cultural
evolution, we can see exactly what this structure is. For example,
Fig. 5 shows the language output by a participant at generation 9 in
1 of the diffusion chains. When one looks at this language, it
immediately becomes clear that there is structure within the signals.
We can analyze each signal as 3 morphemes expressing color, shape,
and movement, respectively, with 1 exceptional irregularity (renana
for a bouncing red circle). It turns out that this general structure
emerges by at least generation 6 and persists to the end of the
experiment, although the details change as some morphemes are
lost or are reanalyzed from generation to generation [see support-
ing information (SI) Tables S1–S8 for the complete set of
languages].

Discussion
What we have observed here under laboratory conditions is cu-
mulative cultural adaptation without intentional design. Just as

Table 2. Number of distinct words by generation in the
second experiment

Generation 0 1 2 3 4 5 6 7 8 9 10

! Chain 1 27 23 22 17 21 21 17 21 25 13 16
" Chain 2 27 26 13 10 10 16 16 12 12 13 12
‚ Chain 3 27 11 16 14 12 17 14 16 20 19 12
#Chain 4 27 19 19 17 19 17 22 23 21 27 23

Symbols correspond to those in Fig. 4.
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Fig. 4. Transmission error and structure by generation in the experiment in which ambiguous data were removed from the training set at each generation. a gives
error for the whole language; b gives structure. These results show that, despite the blocking of underspecification, structure still evolves that enables the languages
to become increasingly learnable. The language discussed in the paper is circled.

n-ere-ki l-ere-ki renana
n-ehe-ki l-aho-ki r-ene-ki
n-eke-ki l-ake-ki r-ahe-ki
n-ere-plo l-ane-plo r-e-plo
n-eho-plo l-aho-plo r-eho-plo
n-eki-plo l-aki-plo r-aho-plo
n-e-pilu l-ane-pilu r-e-pilu
n-eho-pilu l-aho-pilu r-eho-pilu
n-eki-pilu l-aki-pilu r-aho-pilu

Fig. 5. An example evolved language in the second experiment. The language
is structured: the string associated with a picture consists of substrings expressing
color, shape, and motion, respectively. The hyphens represent 1 way of analyzing
the substructure of these strings and are added purely for clarity; participants in
theexperimentalwaysproducedstringsofcharacterswithoutspacesoranyother
means of indicating substructure.

10684 ! www.pnas.org"cgi"doi"10.1073"pnas.0707835105 Kirby et al.

F . Transmission pressures
for learnable languages, resulting
in systematic underspecification
(left). Introducing a pressure for ex-
pressivity results in compositional
structure (right).

Figure reproduced from Kirby, Cor-
nish, and Smith ( ) without
permission.



F . Numerals are numeri-
cally specific, systematic quanti-
fiers.

Reproduced from von Mengden
( ) without permission.
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or some. Numerically specific quantifiers, on the other hand, specify how many 
members of the respective class there are. They assign cardinalities to sets by in-
dicating the exact number of elements in a class irrespective of the extensional 
meaning of the quantified noun.2

2.2 Systemic vs. non-systemic

Cardinal numerals form an important set of numerically specific quantifiers. How-
ever, languages may contain additional expressions which have the same seman-
tic function as cardinal numerals (numerically specific quantification) and very 
similar, if not identical, morphosyntactic properties. Such are, for instance, simple 
expressions like dozen ‘12’ or score ‘20,’ but also complex expressions (which may 
have cardinal numerals as their constituents) like three tens, twice a hundred and 
also, I would argue, expressions of the type fourteen hundred.
 In spite of the obvious similarities between these quantifiers and cardinal nu-
merals, I would recommend excluding the former from the category ‘cardinal nu-
meral.’ In order to justify this delimitation, we need to define the difference be-

2. A detailed discussion of the range of quantifier types cannot be provided here. See, for in-
stance, the discussions in Langacker (1991: 81–89) or Gil (2001). As my focus is on cardinal nu-
merals, the distinction between numerically specific and numerically unspecific plays a more 
central role here than it does in the two descriptions just mentioned.

Quantification

Numerically unspecific Numerically specific
(assignment of cardinalities to sets)

Universal Other Existential

all
every
both
. . .

few
several
many
most
. . .

some
a(n)

Non-systemic

one
two

three
fourteen

twenty-three
one hundred and 

seventy-six
. . .

dozen
score

three twenties
twice a hundred

Systemic
(Cardinal numerals)

Figure 1. Types of quantifiers

An introduction to numeral systems

Starting on the left side of
the body: little finger, ring finger,
middle finger, index finger, thumb,
wrist, middle of forearm, inside
of elbow, middle of upper arm,
shoulder, collarbone, hole above
breastbone, and then continuing
in reverse order at the other side
of the body



Numeralbank is part of Glot-
tobank and largely based on the
work of Eugene Chan. He col-
lected many numeral systems at
mpi-lingweb.shh.mpg.de/numeral.
For most languages, it contains
the expressions for – , , ,

, , , , , ,
and .

,

× +

× ×
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= ← ← −

= − + ×
− − −

qus’am ʌɣam dɔŋas’ bən’s’aŋ ²kiʔ

= + ( ← )

= / ×
= / ×

/ / /

.

( + )× × +

+ ×

visem-nocti, diva(t)-nocti, disa(t)-nocti

× + +

otto tiger,

×

níu tiger,

×

tío tiger,

×

ellefo tiger

×



+ +

But see Zhou and Bowern
( ) for possible gaps in some
restricted Australian systems.
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Emergent
numeral
systems
Numeral systems seem to be an ideal testbed for models of language

evolution. They have a clear hierarchical, recursive structure, there is

plenty of variation, and their structure suggests how they evolved. So

what can the models of language evolution discussed in the first part of

this thesis tell about the emergence of numeral systems? This chapter

addresses that question. To that end we first revisit and reinterpret the

work of James Hurford, who addressed the same question over years

ago. This reveals that naming games can be sensitive to biases in the

domain, which can be distinguished from biases of the agents. Finally,

an attempt to simulate the evolution of numeral systems directly is pre-

sented and discussed.

. . Hurford’s base games . . . . . . . . . . . . . . . . . . . . . . . . .

. . Domain adaptivity in the base games . . . . . . . . . . . . . . . . . .

. . Counting games . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Hurford discusses several
other variants. I restrict myself
to the two his simulations which
appear to be most important for
his argument.

Hurford’s base games

+ × +

× × + ( , )
× , × + +

( )

In this chapter does not de-
note the bottleneck, but a base.

( ) > ( ) ≥ ·
′

( ′),

≥ >

Hurford does not require
( ) > , but this simplifies
the discussion and does not alter
the behaviour of the game.

=

=
( )
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=
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∈ N
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( )

× +

+ + N = { + , . . . , + }
( ) = { ∈ N : ≤ + }

× + × + × + ×
×

= × +
− ( )

= ×



F . Comparison between
the Additive Base Game (black)
and the Multiplicative Base Game
(orange). The dynamics of the
two games are remarkably similar.
Dynamics are visualized using A.
the base counts of all possible
bases for the Additive Base Game
only (the Multiplicative case looks
extremely similar); B. the total base
counts; C. the unique base count;
and D. the probability of successful
communication. See main text for
details.

Results shown for = ,
= , = ; avg. of runs;

std. shaded.

( )

( , )
( )

( ) =
∑

( , )
( )
( ) = |{ : ( , ) > }|

=



F . In the additive base
game, the probability of using a
base without any past experience
(i.e., no preferences) is strongly
skewed towards the highest base.
The game has a strong implicit prior
for using high bases.

The ‘simulation’ is the rel.
freq. of samples.

Domain adaptivity in the base games

, . . . ,
=
=

( ) =
(
− −

)
,

= / + · · ·+ /
= ,

Readers objecting to mathe-
matical constraints being some-
how external to the agents
should note that this does not
undermine the main point that
biasses can differ in kind.

> +



F . The additive base game
in populations biased towards us-
ing base (left) or base (right),
with varying initial score (higher
scores indicate stronger bias). The
figure illustrates that the biases
implicit in the domain and the bi-
ases of the agents work differently:
agents cannot overcome the former
(see main text for details). Note:
averages over runs are shown
and for = . individual runs
convert to either base or base .

Results shown for = ,
= , max = ; avg. of runs,
std. shaded.

=

+ <

≥
≤

< <

, . . . ,
= = = ∞



F . Domain adaptivity in
the multiplicative base game.
Figure A. shows the distribu-
tion over outcomes (adopted
bases) for every the domain
( max) = { , . . . , max}. Note
that the plot shows distributions,
one for each max. The game ap-
pears to exaggerate certain biases
implicit in the domain. Figure B.
shows an approximation of these
biases: the probability that an ex-
pression randomly drawn from all
expressions for numbers in ( max)
uses base . Details are in the main
text.

Results shown for = ,
= . Each of the distributions

is the average over runs.

= +

∈ { , . . . , }
( ) = { , . . . , }

In Hurford’s game,
agents communicate about
{ , . . . , }, but for this exper-
iment the domain was extended.

More precisely, we recorded
the final distribution over bases,
since it sometimes happened
that the population had not yet
converged after iterations.
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F . A naming game with
three objects is just the sum of
three independent single-word

’s when there is no homonymy.
Dashed lines show the statistics
per object; solid lines for the ‘total’
game: the sum of the dashed lines.

Results shown for run; =
, using the current strategy.

Counting games

( , )



This is actually an unfortunate
choice, since figure . suggests
convergence is relatively slow.
When doing this work, I was how-
ever not aware of the existence
of lateral inhibition strategies and
the like.

= = = , =

( , ), ( , )

( , ), ( , ), ( , ), ( , ), ( , ),

, ,

,

=
( , + )

≤
( , , , . . . , )

( , + ) =

≤

ℓ( )



F . Dynamics of the three
counting games measured by the
number of unique pairs and the
initial segment length. In all cases
the population develops a counting
sequence, but the dynamics are
strikingly different. See main text
for details.

Results shown for = ; avg. of
runs, std. shaded.

I have checked all this by
computing the distribution of
fragment lengths for every .

, , ,︸ ︷︷ ︸, , , ,︸ ︷︷ ︸, , ,︸ ︷︷ ︸ .

=
= ℓ( )

, ?



Conclusions

It might be interesting to
note that in some trial experi-
ments where, as the result of
some bugs in the implementa-
tion, prime numbers had a slight
frequency advantage, leading to
the emergence of prime bases.
Clearly these kind of biases are
not driving the evolution of nu-
meral systems. ( )



× +

I am not sure if Hurford
( ) was aware of this. His
definition of a base is explicit
and implies that “ would be the
the base in both ( × ) and
(( × ) + )” (p. ). He also
mentions expressions such as
× + (p. ), which leave

me to conclude that he did not
rule out overrunning.

× +
× +
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F . Typical outcomes of
the Dirichlet-Categorical language
name for the extreme strategies
(sample–sample, –sample,
sample– , – ) in pop-
ulations with immediate turnover
( , iterated learning, = ), no
turnover ( , naming game, = ∞)
and two intermediate turnovers (
and ).

= , = , = ,
=

( , , )
, , ∈ { ,∞} =

= ∞
= =

= , = ∞
=∞, = = =∞

With one notable exception:
there might be stable language
change in between, but possibly
only for a very limited parameter
range.



Ah, how could I have missed
that? The second sense: “(of
conflict) between different com-
munities, especially those having
different religions or ethnic ori-
gins: violent communal riots.”
That explains everything.



Main contributions
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A Converging Markov Chains
Convergence results for Markov chains are key to understanding the long-term be-
haviour of Bayesian iterated learning models. This appendix introduces those results
for ergodic Markov chains.

This ‘gappy process’ is
adapted from Mathias Madsen’s
notes on Random Processes and
Ergodicity (Madsen ). The
presentation of the formalism is
based on Norris ( ).
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This is generally not true for
infinite state spaces, but intro-
duced as an additional condition
(recurrence)
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B Lateral Inhibition Strategies
In chapter we explored five different lateral inhibition strategies, and concluded that
they always converge to an effective, shared language. Do these conclusions indeed
generalize to the rest of the -dimensional, strategy space? The convergence proof
suggests so, but does not apply to the naming games directly. In this appendix part
of the parameter space is therefore explored systematically. The results indicate that
effective languages eventually emerge for all strategies, although the dynamics before
convergence can vary substantially.

, , , , .

≥
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+ ·
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=

=



F . A. The effect of inh
keeping inc = fixed. It interpo-
lates between the minimal strategy
and frequency strategy. B. the ef-
fect of inc for inh = fixed. For
large inc, the inhibition is rendered
ineffective.

Results shown for = ,
dec = , init = , max = ∞; avg.

of runs. success is moreover
a rolling average over a centered
window of iterations.

=
=

+
/

C Mathematical details of
Dirichlet-categorical

This appendix develops the Dirichlet-categorical naming game in amore rigorous fash-
ion. Please refer to chapter for extensive motivation.
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F . The posterior distribu-
tion ( | ) for various if = ∞,
that is, if agents always pick the
most likely word. The posterior re-
stricts the prior to the area of the
simplex where = .

∫

( )

∏
+ − .

I also posted the problem at
math.stackexchange.com/q/ .
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Measuring the distance between languages



F . The divergence be-
tween distributions in the -simplex
and the uniform distribution
( / , / , / ) (indicated by a dot)
under the Jensen-Shannon diver-
gence. Points on the solid lines
have the same distance to the uni-
form

Figure inspired
by a blogpost of Lior Pachter
liorpachter.wordpress.com/tag/jensen-
shannon-metric/
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D Parameter space of the
language game

The Bayesian language game has a language strategy parameter , a production strat-
egy parameter and a parameter for the life expectancy. How do those influence the
resulting behaviour of the model? This appendix reports an experiment that system-
atically analysed the behaviour in a larger part of the space.

( ) :=
(¯ )

( )
,

( ) = ( ) =

( ) := (¯ , ),

( ) = (¯ , . . . , ¯ ).

∈ { , , , ,∞} ∈ { , . , , ,∞}
∈ { , , , , , ,∞}

To be completely clear: that
amounts to million rounds
in independent simulations,
using different parameter
settings.



> >

Coherence is not shown, be-
cause all simulations appear to
have reached coherence. This is
an artefact of the measure used,
which should thus be improved:
populations with few observa-
tions, as in iterated learning, look
perfectly coherent to our mea-
sure, because the shared bias
fully determines their language.

, ∈ { ,∞}
= , ,

∞

, , ∈ { ,∞}

>

=

E A discrete Weibull model of
population turnover

Population turnover is commonly modelled by replacing one random agent in every
round. Such a constant mortality rate is not very realistic, and this appendix proposes
an alternative, discrete Weibull model. It is reparametrised such that the mean life
expectancy is the only parameter.



F . The behaviour of the
Dirichlet-categorical language
game across the parameter space
( , , ). Rows corresponds to
life expectancies ( ); columns
show the coherence, reflectance,
synonymy and variability for every
strategy ( , ). See figure .
for the typical resulting languages
in the extreme cases , , ∈
{ ,∞}.

Every cell is an average
over simulation runs. = ,

= , = , = ∞, = .
Simulations used a deterministic
hazard function.
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It is usually defined for con-
tinuous with density as
( ) = ( )

− ( ) , in which case
it is not a conditional probabil-
ity but the rate of instantaneous
hazard.
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I reparametrized the distri-
bution by taking := and
:= exp(− − ), which is both

computationally and conceptually
more convenient.

( ) =
( ≥ )

( ) =
(
−
(
/
) )

,

( = ) = ( )− ( + ) =
(
−
(
/
) )
−

(
−
(
+ /

) )
.

( ) = ( = | ≥ ) =
( )− ( + )

( )
= −

((
/
)
−

(
+ /

) )
.

( )



F . The Weibull distribution
can model the probability that an
agent dies at time . A. Varying the
parameters of a Weibull distribution
illustrates that is a scale param-
eter and a shape paramater. B. If
> the Weibull is a unimodal dis-

tribution, whose variance decreases
with higher (thinner lines), but for
< the distribution has no mode.

When = the Weibull reduces to
a exponential distribution.

F . The single-parameter
version of the continuous and dis-
crete Weibull distribution. A. The
distributions closely line up and is
easily interpretable. B. The hazard
rate increases with time, thus cap-
turing ageing effects. Note that a
continuous hazard rate ( ) is not a
distribution and exceeds .



≥

( ) := ( ) + ( ) := (
+ / ( )

) , ≥

(
+ / ( )

)
(
( ), ( )

)
( )

≥
=

This results in the hazard rate
( | = ) > − − , which

seems sufficiently close to .

=

= =∞

F Reformulating the packing
strategy

The technical formulation of the packing strategy in (Hurford ) seems to have
caused some confusion in the literature. This appendix reformulates the principle in-
dependent of the original generative framework, without compromising preciseness.
This will bring some limitations of the packing strategy to the fore.

The original phrase structure
rules constructed bases using
exponentiation. This is controver-
sial (see chapter ) so I have use
the most recent, simplified gram-
mar from Hurford ( ). Note
that the rewrite rule of is
different in Hurford ( ), where

is not optional. I have also
changed notation and use
for ; for ; and

for .
−→

{ }

−→



The formulation is from Hur-
ford ( ) and Hurford ( ).
The original also applied to
bases constructed by exponen-
tiation and is thus more compli-
cated, as nodes were non-
terminals. Let be a structure
of category (i.e. a or a

) with value and two con-
stituents: a and some node
of another category ( or

). Then is only wellformed
if has the largest possible
value ≤ . That is, if there
is no alternative ′ that also ex-
pands with val( ) < val( ′).



I doubt whether Hurford
would disagree; over the years
he used ever looser variants of
the grammar, and often opts for
arithmetic formulae in the dis-
cussion (Hurford ; Hurford

).

( × ) + ( + ) ( × ) ×

+

Hurford ( ) does list as
a base, and thus circumvents this
at the cost of using an arguably
wrong notion of base.



( × ) + , + , × .

= ×

+ ×

×
×

+ + +

× × + × +

× + × + ×

( × )+ ( × )+
× ×

× , × ×



×

= +

G Base games
This appendix mathematically derives the implicit biases in the additive naming game
and presents some further analyses of the parameters of the game.

Implicit biases in the additive naming game

= = ( )

( ∈ ( ))

(
∈ ( )

)
=

| ( )|
= ,



N

( = )

( = )

( = )

( = )

( = )

( ) ( | ∈
( )) ∈
( ) , . . . ,

− +
− + =

(
| ∈ ( )

)
=

∑

=

( ∈ ) · ( | ∈ )

= ·
∑

=
− +

= ·
(∑

=

−
−∑

=

)

=
(
− −

)
,

=
∑

= / :=

( ) =
(
∈ ( )

)
·
(

| ∈ ( )
)

=
(

− −
)
.

∑

=

( − − ) =

−∑

=

− = · ( − ),



F . Effects of , the pa-
rameter regulating the produc-
tion strategy in the additive base
game. Clearly, smaller values lead
to slower convergence time.

Results shown for = ,
= ; avg. of runs; std.

shaded.

F . The effect of , the
number of bases, in the additive
base game.

Results shown for = ,
= ; avg. of runs; std.

shaded.

− = := −

Properties of the additive base game

( ) > ( ) ≥ · ( ),

≥ > ∈ { , / , / }

= /

=

∈ { , , , }
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