Unifying horizontal and vertical interactions in the Bayesian language game

Bas Cornelissen Willem Zuidema

Institute for Logic, Language and Computation University of Amsterdam

IN A NUSTELL We propose a Bayesian framework that connects Bayesian iterated learning (IL) to naming games (NG), the two main branches of agent-based models of cultural language evolution. Surprisingly, the two appear to be closely related: the extremes of continuum. We find that Bayesian IL trivializes the effect of cultural evolution, whereas the Bayesian NG yields non-trivial, lineage-specific languages.

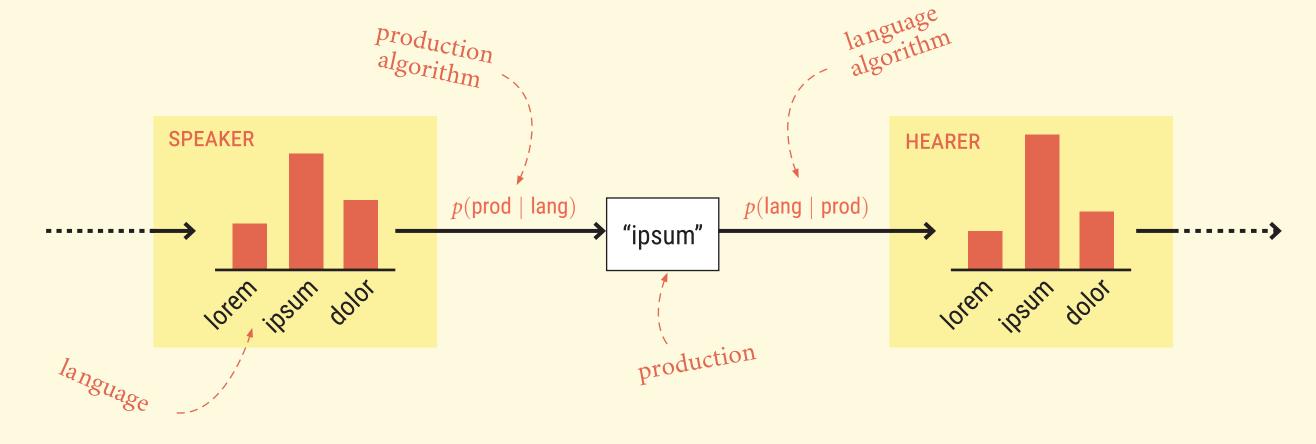
TECHNICALITIES The BNG is inspired by Bayesian IL models⁴ and extends the NG of De Vylder & Tuyls.⁵ Agents essentially perform repeated Bayesian updating in a Dirichlet-categorical:

SPEAKER
$$\begin{cases} \theta_t \mid \alpha_{t-1} & \sim \text{Dirichlet}(\alpha_{t-1}) \\ x_i \mid \theta_t & \sim \text{Categorical}(\theta_t) \end{cases}$$
HEARER
$$\alpha_{t+1} := \alpha_t + c_t$$

where θ is a language, x a production, α the param. of Dirichlet, and c a vector of counts. **FRAMEWORK**

Bayesian naming game

The speaker picks a language (a distribution over words), accounting for its innate biases towards certain languages, and produces a word. The hearer observes the word and updates the probabilities it assigns to all languages in a Bayesian fashion. On average, this makes the observed word more likely to be produced when the hearer later becomes a speaker. Alignment is thus increased.

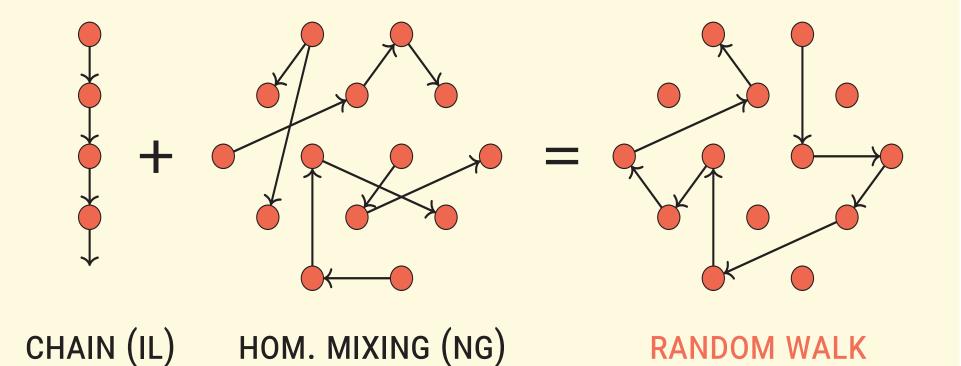


 $p(\mathsf{lang} \mid \mathsf{prod}) \propto p(\mathsf{prod} \mid \mathsf{lang}) \cdot p(\mathsf{lang})$

Alternative interpretation: a language as a distribution over *linguis*tic features rather than words.1

Population model

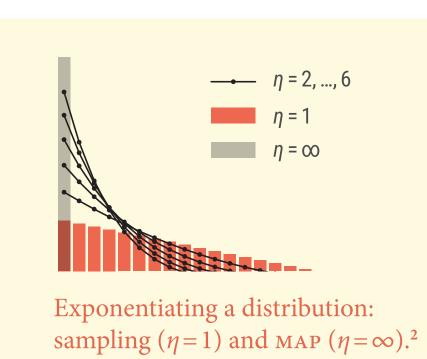
The life expectancy, in a random walk, interpolates between IL $(\gamma = 1)$ and NG $(\gamma = \infty)$.



Strategies: MAP—sample

Sample languages and productions or use the ones with maximum probability (MAP)?

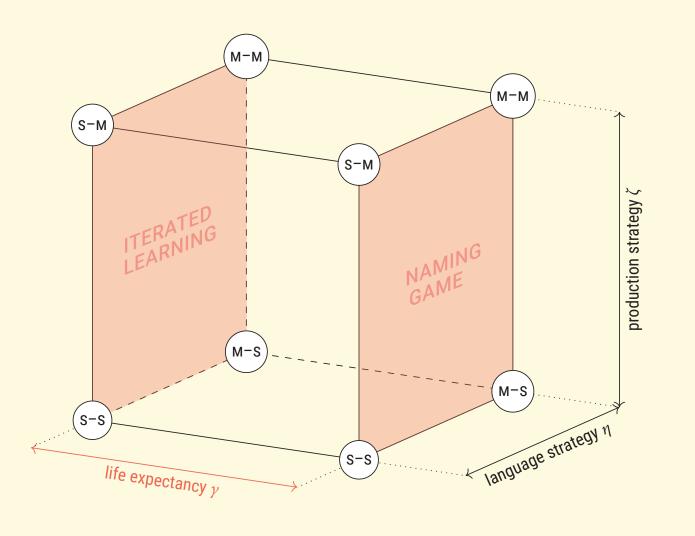
lang. strategy $\propto p(\mathsf{lang} \mid \mathsf{prod})^{\eta}, \quad \mathsf{prod. strategy} \propto p(\mathsf{prod} \mid \mathsf{lang})^{\zeta}$



Bayesian language game

Unified view of Bayesian agentbased models of cultural language evolution: from Bayesian IL to BNG, with all strategies.3

> Parameter space. s-m = a sampling lang. strategy $(\eta = 1)$ and maximizing prod. strategy $(\zeta = \infty)$



interpolate between samplers and maximisers. **3** It should be noted that in this framework, agents are *not* perfect Bayesian reasoners when they use a maximising production strategy (i.e., $\zeta > 1$).

generalisation. They use queue-agents and languages are the simplex. We use the full simplex and no queue.

1 See e.g. Reali & Griffiths (2010), whose IL model is identical 4 e.g. Griffiths & Kalish (2007). In the IL setting (y=1), the Griffiths, T. L., & Kalish, M. L. (2007). Language Evolution by Reali, F., & Griffiths, T. L. (2010). Words as alleles: connect-Bayesian language game reduces to Reali & Griffiths (2009). Iterated Learning With Bayesian Agents. Cognitive Science, ing language evolution with Bayesian learners to models of **5** De Vylder & Tuyls (2006) proved convergence in a determin- 31(3), 441–480. http://doi.org/10.1080/15326900701326576 genetic drift. *Proceedings. Biological Sciences / The Royal* istic variant of a naming game of which ours is a near-direct Kirby, S., Dowman, M., & Griffiths, T. L. (2007). Innateness and

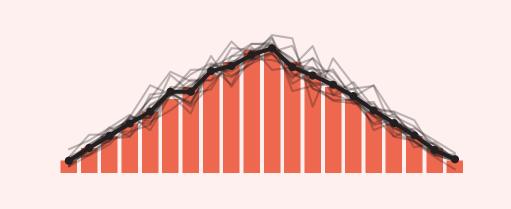
culture in the evolution of language. *Proceedings of the Na-* De Vylder, B., & Tuyls, K. (2006). How to reach linguistic conalways relative frequencies, which form a discrete subset of tional Academy of Sciences of the United States of America, sensus: A proof of convergence for the naming game. Journal

Behaviour of the Bayesian naming game

In the BNG, coherence is reached with a lineage specific language that reflects the biases, but is process.

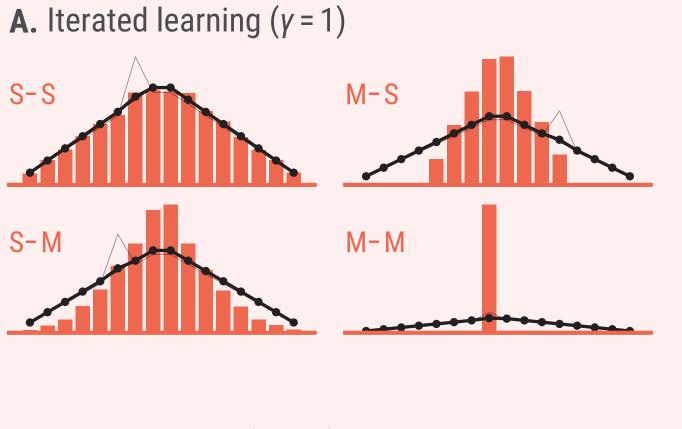
The BNG reproduces wide, constrained variation. The variation is determined by the strenght of the non-trivially shaped by the cultural bias, and the average of different lineages gives the bias.

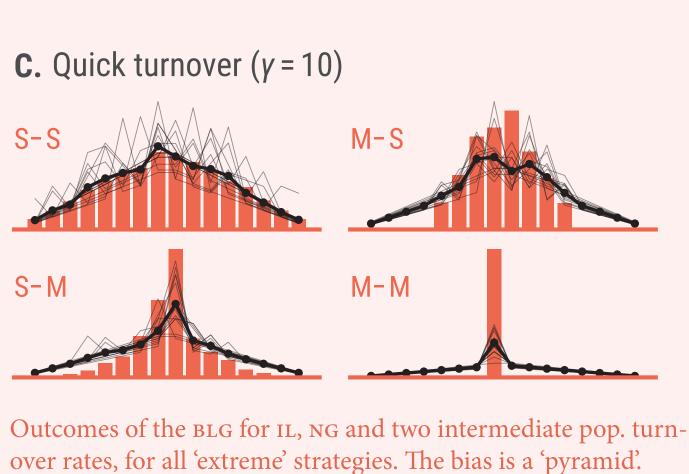
A. Lineage specificity and reflection of the bias

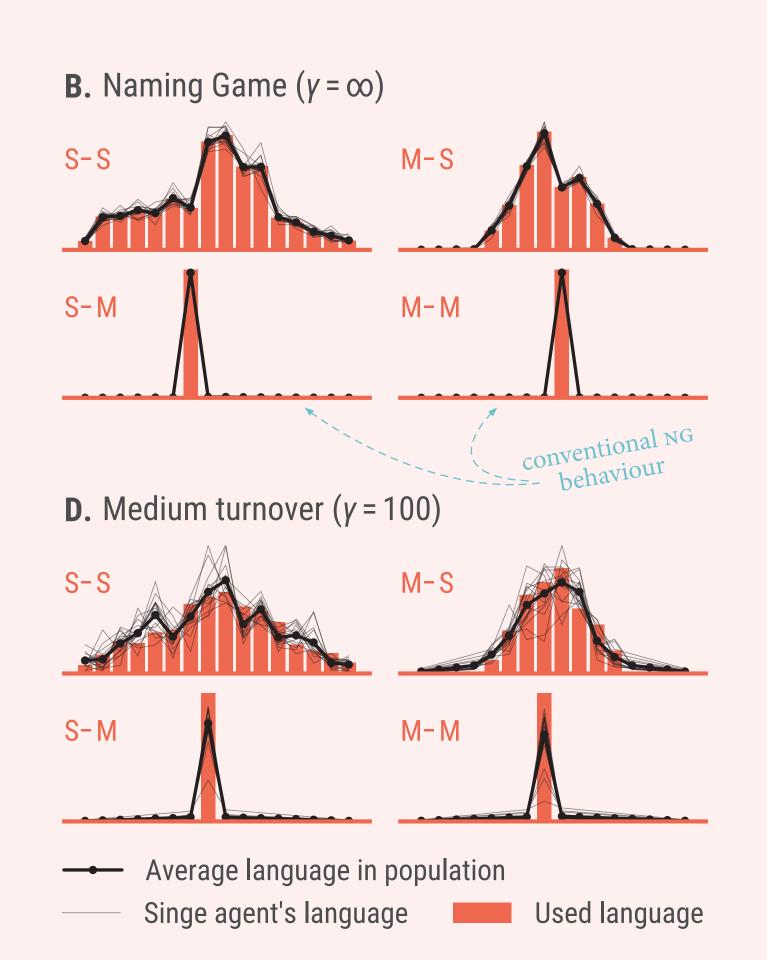


FINDINGS

Characterising the Bayesian language game







The Bayesian IL model seems predictably determined by the biases life expectancy (lower turnover) re- tural process.

sults in stronger non-trivial cultural effects. The resulting language is (even for non-samplers). A higher shaped by both the bias and the cul-

CONCLUSIONS Iterated learning connected in the Bayesian language game. One extreme case, the Bayesian NG, reveals new behaviour: lineage-specific

langauges that reflect innate biand naming games are naturally ases of the learners. In comparison, Bayesian 11 models seem to trivialize the cultural process. This highlights the importance of horizontal interactions.