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Prelude

W
e are an extraordinary species. In just about any
climate, from the freezing colds of the Arctic to the

dazzling heat of the Sahara, human populations

thrive. On virtually every stretch of land you could

visit, you would findmore of us: humans. Far from

a colorless, uniformmass, it is a spectacular display of cultural diversity.

You can find peoplewith hundreds of gods and thosewith no gods; people

living in skyscrapers and those who carry their homes; those who live in

mountains, and thosewho fare seas. But nomatter where you go, youwill

find that they have language andmusic.

Music and language exemplify the richness and diversity of human

life. There are over six thousand languages in the world, and orders more

must have existed since our ancestors started to talk. There are languages

without sounds and languages with dozens of them; languages that pack

into one word, which would require several sentences in another. Some

use east and west instead of left and right; in others, verbs do not live in

the past, present, or future. There are languageswith an endless inventory

of number terms and those without any. But all these languages have

at least one thing in common: children pick them up spontaneously and

seemingly without effort. The case for music is not that different. You

can find music without melody and music without a beat. Music with

dozens of notes in an octave or just two. Music with conflicting meters

andmusic without meters. What sounds pleasant in one type of music

could be awfully dissonant in another. But while most of us canmove to

a beat or hum amelody, your dog can’t—and that is certainly no lack of

exposure.

Language andmusic are not the answer to what it means to be human,

but they are an important part of it. Why so? Why did humans evolve

to make music? And how so? I will not answer such ‘big questions’ in

this dissertation: they are the questions that have motivated some of the

smaller questions that Iwill address. The idea, in short, is this. If youwant



to understand the evolution ofmusic, it helps to studywhat sorts ofmusic

exist, howmusical traditions—ormusics—relate, and how they compare.

Are there properties that all musical traditions share, or hardly any share?

To answer such questions, you have to startmeasuring musics: manually,

perhaps, or automatically, using computational methods. And that is the

central topic of this dissertation: developing computational methods to

measure musics, from the modality of chants or shapes of melodies to

inventories of rhythmic motifs and even an intricate rarity.

1.1 Music and musicality
But first—music? I imagine that a biologist would characterize music as a

behavior. Comparable perhaps to how somemusicologists prefer to see

music as an activity, not an object, and refer to it with the verbmusicking

(Small, 1998). Musical behavior can takemany forms: singing, dancing,

playing an instrument, listening, or perhaps just silently studying sheet

music or preparing a performance.

Much of ourmusical behavior is learned socially from other individuals

and shared by a group. In biology, such behavior is known as cultural

behavior, in contrast to for example instinctive behavior (e.g., Hoppitt &

Laland, 2013). It is typical for much of human behavior but can also be

found in other species, fromwhales and dolphins (Whitehead & Rendell,

2015) to perhaps even bees (Alem et al., 2016; Loukola et al., 2017). Cultural

behavior results in a dual inheritance: individuals inherit not only their

genetic makeup (biological inheritance) but also some of their behaviors

(cultural inheritance). When thinking about cultural behavior, it may

be helpful to distinguish the cultural phenomenon from the biological

abilities that underly it. This distinction is commonly made for language,

perhaps one of the better examples of a “cultural system that runs on

biological infrastructure” (Levinson &Dediu, 2013).

Aswith languages, accumulating evidence suggests thatmusics build on

a biological infrastructure known asmusicality (Honing, 2018). Musicality

does not refer to some special ability only gifted musicians have. It refers

to the common, widely shared abilities that allow humans to engage in

musical behavior, whether playing (production) or just listening (percep-

tion). The abilities are thought to be so common that people lacking them

have become of scientific interest: the tone-deaf or those unable to hear

a beat. Honing (2018) defines musicality as “a natural, spontaneously

developing set of traits based on and constrained by our cognitive and

biological system”. This definition adopts amulti-component perspective:

it suggests thinking of musicality as composed of multiple components or

traits, such as beat perception, relative pitch perception, or vocal learn-

ing. A prominent research agenda in the field now aims to determine

which components underly humanmusical behavior or, differently put,

to characterize themusicality phenotype (Honing, 2018).
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Turning to “themusical systems of cultures” (Nettl, 2005), what pre-

cisely aremusics? In terms of cultural behavior, a music would be some-

thing like the totality of musical behavior shared by a cultural group. Its

rich cross-cultural diversity makes it notoriously hard to pinpoint what

counts as musical behavior—not to mention themany efforts to stretch

its boundaries. A pragmatic escape assumes that musical behavior can be

reliably recognized bymembers of a cultural group or trained ethnomu-

sicologists. To further characterize musics, one could adopt a typological

perspective on musics, in analogy with amulti-component perspective on

musicality. Just like a multicomponent perspective breaks down musi-

cality into different parts and studies those across species, a typological

perspective breaks downmusical behavior into a set of characters or fea-

tures and examines their variability across musics.

This is by no means a novel agenda: it was a central concern of the

discipline of comparative musicology that blossomed almost a century ago

(Nettl, 2005; Savage, 2019), and resulted in typologies that are still used

today, such as the Hornbostel–Sachs instrument classification. After the

SecondWorldWar, the field adopted the new name of ‘ethnomusicology’

andmoved focus to in-depth fieldwork and culture-specific description.

In thewords of BrunoNettl (2005), “we study eachmusic in its own terms,

andwe try to learn to see it as its own society understands it” (Nettl, 2005,

p. 13). Comparison still had an important role to play, but a more rela-

tivistic one. Interest in cross-cultural comparison has recently resurfaced

and even led to an attempt to revive comparative musicology (see e.g.,

Savage & Brown, 2013). This new comparative musicology also takes a

typological perspective of musics, and is heavily invested in classifying,

and comparingmusical traditions. But as it aims for global comparisons,

it is bound to understandmusics not on their own terms, but in general

terms: it develops concepts that are applicable cross-culturally.

In this dissertation, we focus on a few musical features and aim to

characterize these computationally: primarily mode and contour, but

also rhythmic and melodic motifs. We will focus almost exclusively on

musical scores, whichmeans that the term ‘music’will be used in a narrow

sense: that specific product of musical behavior that can be captured in a

musical score. And as any musician used to notated music knows, that

is fairly limited. It strips the rich behavior of much of its context and

meaning. However, while musical behavior may be much more than a

formal structure, it still has formal structures, and wewill focus on those

in this dissertation.

1.2 Outline
The form of this dissertation is somewhat unusual. Indeed, I prefer to call

this work a ‘dissertation’ and not a ‘thesis’ as I do not put forward one

central thesis for which each of the chapters provides arguments. Instead,

the core of this dissertation consists of a series of interconnected articles.

Outline 5
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figure 1.1 – Outline. This
dissertation develops a series
of computational methods
to ‘measure musics’. It is or-
ganized as a series of articles
interleaved with interludes.
Central themes as melodic
modes, motifs, contours, and
typology, appear in multiple
chapters, often relying on
the chant and folk music
corpora introduced in the
first two chapters. The figure
highlights some thematic
connections between the
chapters.

I have chosen to interleave those articles with interludes, as illustrated in

Figure 1.1. The articles, evenly numbered, can be quite formal, while the

odd interludes are writtenmore freely. Although one could think of the

interludes as divertimenti, they are more than academic amusement: the

interludes describe the projects that have not yet fully matured but still

deserve a place in this dissertation.

chapter 2 The first two chapters lay out the groundwork by introducing

the main corpora studied in this dissertation. Chapter 2 presents two

plainchant corpora, the Cantus Corpus and the GregoBase Corpus, along

with a Python package that parses plainchant formats. The corpora and

software are illustrated in two small case studies. One of the case studies

confirms themelodic arch hypothesis in plainchant: phrases from this reper-

toire indeed tend to be arch-shaped, as the hypothesis suggests. The case

study also paves the way for more in-depth studies of melodic contour

representations in chapter 6 and chapter 8.

chapter 3: interlude This interlude discusses the Catafolk project that

aims to collect consistent metadata from folk song corpora, allowing one

to bundle many corpora into one larger cross-cultural corpus. The project

is a proof of concept and primarily contains subsets of the Essen Folk-

song Collection and the Densmore Collection, which will be used in later

chapters.

chapter 4 This chapter attempts to measure the central organizational

structure of plainchant: the eight modes. Modes are melody types that lie

somewhere between abstract scales and concrete melodies. We compare

three differentways to classifymusicalmode: two approaches that largely

viewmode as a scale and one distributional approach that focuses on its

6 Chapter 1 Prelude



melodic character. We find that this latter approach can still determine

mode fairly accurately evenwhenall pitch informationhas beendiscarded.

However, this only really workswhen themode is segmented in the ‘right’

way: in units corresponding to textual units such as syllables and words.

We also propose a simple attributionmethod that visually explains why a

chant may have been classified to a particular mode. All in all, the chapter

confirms that mode is amelodic phenomenon, but it also suggests that

this repertoire is built up from small melodic units, comparable perhaps

to how a sentence is composed of syllables and words.

chapter 5: interlude Following the linguistic analogy, this interlude

takes on plainchant using a neural languagemodel, partly because such

a model would also be capable of generating artificial chant. But the

interlude also tries to understand what kind of representations the model

learns. Although preliminary, the learned chant representations suggest

that mode and genre are the two primary axes along which chants are

organized.

chapter 6 The next chapter takes amore general perspective on the axes

along which melodies and their shapes are best described. We analyze

the principal components of melodies, represented as fixed-length pitch

sequences and find that the principal components closely approximate co-

sine functions of increasing frequency. After explaining why the variance

in melodies may be best explained by cosines, we propose a new contour

representation thatwe call cosine contours. We illustrate the representation

in three small case studies.

chapter 7: interlude Cosine contours can be seen as a form of continuous

music typology: they describe the musical feature ‘contour shape’ in a

continuous fashion. The next three chapters continue this line of thought.

First, we look at rhythmic motif frequencies. We visualize rhythmic data

frommusic and animal vocalizations by plotting all motifs of three succes-

sive temporal intervals in a so-called rhythm triangle. Thinking in terms

of motifs leads us to a measure of isochronicity—how steady, pulse-like a

rhythm is—that generalizes the nPVI, a more commonly usedmeasure.

Our measure of isochronicity produces a cross-section of the rhythmic

variability in music and animal vocalizations. Throughout the interlude,

we discuss a question that has attracted attention recently: are rhythms

in a given dataset categorical? This effectively questions the presence of

statistical modes in some continuous space: the rhythm triangle, in this

case.

chapter 8 The next chapter also investigates the presence of statistical

modes, but now in the space of melodic contours. What sort of typology

one can best use to describe the distribution of melodic phrase contours?

Rephrasing this as a clustering problem, we propose a way tomeasure the

presence of statistical modes—but find none. This suggests that melodic

Outline 7



phrase contours do not cluster into separate types, rendering any dis-

crete typology somewhat arbitrary. This, combined with shortcomings in

commonly used discrete typologies, suggest that one should instead view

melodic contour as a continuous phenomenon.

chapter 9: interlude After measuring rhythmic motifs in chapter 7, this

interlude measures melodic motifs. It visualizes melodic units of three

successive notes (or two intervals) inwhatmight be called amelody square.

Though simple, such squares are informative enough to group corpora by

their rough area of origin. More importantly, the melody squares readily

suggest commonmelodic patterns as well as rare ones. The music of Arvo

Pärt may be a musical rarum, as it hides melody squares with a surprising

symmetry.

chapter 10 The final chapter is a case study of a single piece, Summa

by Arvo Pärt. So far this dissertation developed formal ways tomeasure

‘informal’ music, but formal methods may well be indispensable to the

study of certain formalmusic. To showwhy, we attempt to reconstruct

Summa using formal procedures: an algorithmic reconstruction. This

finale also closes the circle: Pärt’s tintinnabuli style takes inspiration from

the plainchant with which wewill soon start this dissertation.

Several of these chapters are directly based on published articles, while

others have not been presented elsewhere before. At the end of every

chapter, I have included references to the relevant publications, pointers

to data and code, and also listed author contributions.
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Chant corpora
This chapter presents chant21, a Python package to support

the plainchant formats gabc and Volpiano in music21, to-

gether with two large corpora of plainchant. The Cantus-

Corpus contains over 60,000 medieval melodies collected

from the Cantus database, encoded in the Volpiano typeface.

TheGregoBaseCorpuscontainsover9,000 transcriptions from

more recent chant books in the gabc format. Chant21 converts

both formats to music21 while retaining the textual structure

of the chant: its division into sections, words, syllables, and

neumes. We present two case studies. First, we report evi-

dence for the melodic arch hypothesis from the GregoBase

Corpus. Second, we analyze connections between differentiæ

and antiphon openings in the Cantus Corpus and show that

the systematicity of the connection can be quantified using

an entropy-basedmeasure.

Introduction 12 • Corpora 13 • Chant21 14 • Case

study 1: Themelodic arch 15 • Case study 2: Differentiæ 17

• Conclusions 19



2.1 Introduction
If one thing stands out about our species’ musical behavior, it is its ubiq-

uity: all cultures seem tomakemusic (Mehr et al., 2019). Yet, our under-

standing ofmusic from corpus studies is almost entirely based onWestern

classical or popular music (Savage, 2022). Part of the explanationmight

be the scarcity of large corpora from other traditions. Recent efforts have

been addressing this, often under the header of computational ethnomusi-

cology (Tzanetakis et al., 2007). We contribute to the efforts to diversify by

converting two existing databases of Christian plainchant into a form suit-

able for corpus analysis in popular tools: themedieval Cantus Corpus and

themore recent GregoBase Corpus. We also release the Python package

Chant21 for working with these corpora in music21. Finally, we present

two case studies illustrating their usefulness. First, we show that melodic

phrases have arch-shaped contours in the GregoBase Corpus, confirming

the generalmelodic arch hypothesis (Huron, 1996). Second, we focus on a

particular problem in chant scholarship and revisit the relation between

so-called differentiæ and antiphon openings (Shaw, 2018) in the Cantus

Corpus.

The plainchant on which we focus is, indeed, another European tra-

dition. But it is sufficiently distant fromWestern classical and popular

music, if not in time, then certainly in its musical language, to be studied

as a separate tradition (Jeffery, 1992). The music goes back well over a

thousand years, to the ninth century, when the first melodies appear in

manuscripts. Multiple chant traditions had coexisted in Europe before

then, with their own variants of music and texts, but manywere (partly

deliberately) displaced by what became known as Gregorian chant. The

monophonic melodies are rooted in the recitation of sacred Latin texts,

which formed the backbone of the liturgy. The first manuscripts therefore

only record the text, but later sketches of the melodies appear between

the lines of the text. These sketches consisted of so-called neumes, figures

indicating the contour of small melodic motifs but not their exact pitches.

Later, these neumes were placed on staff lines to also indicate their ex-

act pitches. This developed into both themodern five-line notation and

the four-line square notation used in chant books today. The corpora we

present employ both types of notation (Figure 2.1).

The chant repertoire was, sometimes actively, organized along several

lines (Hiley, 2009). First of all, chantswere classified into a systemof eight

modes, usually grouped in four pairs (Dorian, Phrygian, Lydian, Mixoly-

dian). Two pairedmodes use the same final note but differ in their typical

range: the so-called authentic onemoves mostly above the final, and the

plagal one around it. This already shows thatmodes aremelody types, more

than just the church scales to which they are sometimes associated (Pow-

ers et al., 2001). We discuss modes in more detail in chapter 4. Second,

different parts of the liturgy use different chant genres, from the short,

syllabic antiphons to the elaborate responsories. Some genres, like an-

tiphons, consisted of freely composedmelodies, but others, like psalms,

12 Chapter 2 article Chant corpora



figure 2.1 – Volpiano and
gabc. Two versions of Alma
redemptoris mater. (a) The
Cantus Corpus contains
melodic transcriptions
from medieval manuscripts
notated in Volpiano: a
simple five-line notation.
(b) The GregoBaseCorpus
contains scores from recent
chant books in the gabc
format, an elaborate format
for four-line square notation.

1---fh-ijkk-lnmlkj-klkk--h---k--kk--f--gh---jgf--f-
1---fh-ĳkk-lnmlkj-klkk--h---k--kk--f--gh---jgf--f

(cb3) AL(d.f!gwhhv//ikkvJ'IH'Ghih'h)ma(fef.) *(,)

Re(h)dem(h')ptó(d)ris(ef) Ma(gvED)ter,(d.) (;)
gabc

Rendition

Volpiano

Rendition

A. Cantus: Volpiano transcriptions

B. GregoBase: gabc transcriptions

used standardmelodic formulae: a reciting tone decorated by an opening

and closing gesture particular to themode of the chant.

Most computational studies of plainchant have been concerned with

optical music recognition of medieval manuscripts. But several recent

studies have addressed more musicological questions, also in other chant

traditions: Panteli and Purwins (2013) analyzed scale intonation in Byzan-

tine chant, and Biró et al. (2012) studied cadences in Torah trope. Closer to

the present work, van Kranenburg andMaessen (2017) used perplexities

under an n-grammodel to classify five early Christian chant traditions.

We hope that the two corpora and software wewill now present inspire

more computational studies of plainchant.

2.2 Corpora
The first corpus we present, the Cantus Corpus, is in essence a cleaned-

up export of the Cantus database (Lacoste et al., 1987–2019). This is an

online index of the manymedieval manuscripts kept in libraries across

the world. As of this writing, it contains 497,071 chants; the database

contains records for almost all, with information on where they are found

in whichmanuscript, but also on things like their incipit, liturgical genre,

feast, mode, and a Cantus id to be able to identify the same chants across

manuscripts and databases. For 63,628 chants (13%) the melody has also

been (partially) transcribed using Volpiano.1

1 Of the transcribed chants,
37% contain fewer than
30 notes and are probably
incipits.

Volpiano is a typeface that renders text as notes on five staff lines and

was specifically developed for notating plainchant. Several conventions

are commonly adhered to, such as the use of three, two, and one hyphen(s)

to indicateword, syllable, andneumeboundaries respectively (Figure 2.1a).
This allows themusic to be aligned to themanuscript text, which is tran-

scribed separately. Many of these conventions have been fixed in the elab-

orate transcription guidelines of the Cantus database, and this is what

we refer to as the (Cantus) Volpiano format. The guidelines and editorial

reviews ensure a high transcription quality (Helsen & Lacoste, 2011).
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figure 2.2 – Chant21 in
action. Chant21 improves
the support for plainchant
in Music21 with converters
for gabc and Volpiano. It
uses a chant representation
that divides the chant into
sections, words, syllables,
and neumes. This structure
can be interactively explored
in Jupyter notebooks.

The Cantus database is easy to use for chant scholars, but not nec-

essarily for computational purposes: it is continuously updated, which

is actually inconvenient when replication is a concern. We, therefore,

scraped the database via its api and converted it to a set of clean csv files
which we release as the Cantus Corpus. Releases are versioned as we plan

to occasionally release newer versions.

Our second corpus, GregoBase Corpus, again repackages and versions

an existing database: GregoBase (Berten, 2013–2020), which provides a

complementary perspective on chant. Whereas theCantus databasemaps

the complexity of medieval manuscripts in a simplified notation (Volpi-

ano), GregoBase consists of modern reinterpretations of the Gregorian

repertoire: the one found in chant books like the Liber Usualis. Such books

are indented for practical use and use the full scope of square notation,

including things like breathing marks, different note shapes, rhythmic

signs, and clef changes.

The GregoBase website currently hosts 9139 chant transcriptions from

29 books, including the complete Liber Usualis. The transcriptions are

written in gabc (Figure 2.1b), a plain text format for square chant nota-

tion, developed for the typesetting system Gregorio. We converted the

GregoBase database to a set of easy-to-use csv files, but also to separate
gabc files that includemetadata such as themode, liturgical genre, and

all books a chant appears in.

2.3 Chant21
To make it easier to work with the two corpora we present the Python

package chant21 which improves the support for gabc and Volpiano in

music21 (Cuthbert & Ariza, 2010), by now the go-to toolkit for symbolic

computationalmusicology. Chant21 consists of parsers for (1) gabc and (2)

Volpiano; (3) a way to align text to music notated in Volpiano; (4) a chant

representation that retains the subdivision in sections, words, syllables,

and neumes; (5) away to export this representation tohtml, which allows

for fast visualization in Jupyter notebooks.
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figure 2.3 – Contour repre-
sentation. Contours consist
of 50 pitches, sampled af-
ter normalizing the phrase
duration and transposing
the phrase by its mean pitch.
This is illustrated in the first
two phrases of the antiphon
Alma mater redemptoris. The
plots below the score show
the contours in black over a
red piano roll.
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Writing parsers for the elaborate gabc syntax and the informal Volpi-

ano guidelines is not straightforward. After experimenting with custom

parsers, we decided to specify the syntax of both formats as parser expres-

sion grammars (pegs) (Ford, 2004).2

2 This idea was borrowed
from gabc-parser, but we
had to completely rewrite the
grammar as gabc-parser
only implements the basic
features of gabc and left
many chants unparseable.

Specifying the syntax in a grammar

makes it transparent andmuch easier tomaintain. pegs resemble context-

free grammars but use a deterministic choice operation to make parse

trees unambiguous. After specifying the grammar, we delegate the actual

parsing to the peg parser Arpeggio (Dejanović et al., 2016). The resulting

parsers are reliable: their error rates are well under 1%when evaluated on

the Cantus Corpus and GregoBase Corpus andmost failures are caused by

syntax errors.

The parse trees of both gabc and Volpiano strings are then converted

to music21 objects, but using a custom, hierarchical chant representa-

tion that groups the music into sections, words, syllables, and neumes.

This structure can be useful in computational studies (as we will see in

chapter 4) but is also needed to align Volpiano to the text. The Cantus

database has guidelines for full-text transcriptions: how to for example

mark section boundaries, or missing pitches. We use another peg-based
parser to parse the text and then split all words in syllables using the Latin

syllabifier from the Classical Language Toolkit (Johnson et al., 2014–2021).

After all this, the text is divided into sections, words, and syllables, which

wematch to their counterparts in the music.

Finally, inspired by the Cantus website, chant21 can export the hierar-

chical chant representation to html, using Volpiano to display the music.

This is particularly useful in Jupyter notebooks: it results in much faster

typesetting and allows you to interactively explore the structure of the

chant. After installingVolpianoand running pip install chant21, chant21

is ready to be used (Figure 2.2).

2.4 Case study 1: The melodic arch
To illustrate the usefulness of the presented corpora and software, we

discuss two case studies. The first concerns themelodic arch hypothesis: the

claim that the pitch contour of musical phrases across cultures tends to

be arch-shaped. David Huron (1996) was the first to present quantitative

support for this phenomenon, based on an analysis of 6000, mostly Ger-
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figure 2.4 – Average phrase
contours. The melodic arch
hypothesis seems to hold in
Gregorian chant. Averaging
all phrase contours results
in arch-shaped contours
(colored), whereas averaging
random segments (grey)
yields more or less flat
contours. This is illustrated
for four chant genres.
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man folksongs from Essen. Later studies confirmed the hypothesis in the

2000Chinese folksongs thatwere later added toEssen (Tierney et al., 2011),

and a small global sample of 35 recordings from the Garland Encyclopedia

(Savage et al., 2017). It has been suggested that the melodic arch is the

result of general motor constraints (Tierney et al., 2011). Those make it

easier to produce rising pitch contours at the start of a phrase when the

pressure beneath the vocal folds is rising, and falling contours when the

pressure drops towards the end. These constraints could imply a weak

tendency for phrases to be arch-shaped (or descending) on average, even

though individual phrases can take many shapes.

We analyze if these findings extend to Gregorian chant and focus on

the Liber Usualis from the GregoBase Corpus (v0.4). We extracted phrases

using the explicit breathingmarks (pausas) in chant notation. As rhythmic

interpretations of chant vary, we assigned all notes in chants equal dura-

tion. We removed duplicate phrases and phrases with fewer than 4 notes,

and then randomly sample 3000 phrases per chant genre. Finally, we

normalized all phrases to have duration 1 andmean pitch 0, and sampled

50 equally spaced pitches from the resulting contour (Savage et al., 2017;

Tierney et al., 2011), as illustrated in Figure 2.3.

We average the 3000normalized contours of a given genre and compare

this to the following random baseline. We randomly segment every chant

by successively sampling segment lengths from a Poisson distribution

approximating the actual phrase lengths. The first and final (random) seg-

ments of each chant are omitted. This results in a set of random segments

whose lengths are similar to actual phrases, but whose boundaries are

unlikely to overlap with actual phrase boundaries. This keeps the melody

intact and only shifts phrase boundaries—rather than shuffling all pitches

(Savage et al., 2017).

Figure 2.4 shows the average phrase contours (coloured) compared to

the average random segments (grey) for four chant genres. Whereas the

actual phrases are clearly arch-shaped on average, the baseline is pretty

much flat. The overall size of the arch is small (around 2 semitones), but

similar to earlier findings (Savage et al., 2017; Tierney et al., 2011). The
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figure 2.5 – Differentia-
antiphon connections
in all modes. Each line
represents the last 6 notes
of the differentia (colored),
followed by the return to
the antiphon (black), and 5
more notes of the antiphon
(colored). We sample and
show 200 connections per
mode, jittered vertically to
reveal clusters of overlapping
contours.

average contours appear to differ across genres, but it requires further

analyses to see if these differences are significant. The comparison with

the random baseline does however make clear that phrase boundaries

have a noticeable and consistent effect on the shape of phrase contours.

In sum, these results from this corpus of plainchant are consistent with

themelodic arch hypothesis.

2.5 Case study 2: Differentiæ
Our second case study revisits a particular problem in chant scholarship:

the relation between so-called differentiæ and antiphon openings (Shaw,

2018). Every week, monks would sing a cycle of 150 psalms to melodic

formulae known as psalm tones. An antiphon was sung before the psalm

and repeated afterward. The differentiæ is the very end of the psalm, al-

ways set to the words sæculorum amen (abbreviated as euouae) and sung
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figure 2.6 – Entropy of the chant. (a) We move a sliding window of 4 notes across the chant
and estimate the unpredictability in the window using the entropyHt:t+3 (details in the
main text). This shows that differentiæ (t ≤ −4) are more predictable than antiphons
(t ≥ 0). (b) Highlights the window containing the last 3 notes of the differentia and the
first note of the antiphon, showing for example that the connection in mode 6 is more
predictable than in mode 4.

directly before the repetition of the antiphon. The order, in short, was

always antiphon–psalm–differentia–antiphon. A question dividing chant

scholars is whether there is a systematic relation between differentiæ

and antiphon openings: do certain psalm endings usually imply certain

antiphon openings?

Shaw (2018) conducted the first large-scale data analysis and suggests

that there is indeed a systematic connection for mode 1. Using chant21 we

can extend this to all eight modes by visualizing the connections directly.

We selected all 7102 antiphons from the Cantus Corpus (v0.1) that had a

complete Volpiano transcription, lyrics ending on variants of aeouae, and

a ‘simple’ mode (e.g., not transposed). We extract the last 6 pitches of the

differentia and concatenate the first 6 notes of the antiphon to obtain the

(differentia–antiphon) connections. We transpose all connections so that

the final has pitch 0.

Figure 2.5 shows the connections for allmodes. The systematicity seems

to differ betweenmodes. For example, mode 6 exhibits a very systematic

connection: only one differentia is really ever used, and this virtually

always leads to the same starting pitch of the antiphon (the final, f). Mode

5, on the other hand, also uses mostly one differentia, but this leads to

three possible antiphon openings. This is certainly less systematic but

still more predictable than a random transition.

We can quantify this difference in systematicity. For a given mode,

consider all the segments s−3:0 = (n−3,n−2,n−1,n0) spanning the last

three notes of the differentia and the first of the antiphon. If p(s−3:0)
denotes the relative frequencies of all such segments, thenwe canmeasure

the systematicity of a connection using its entropyH(p(s−3:0)) orH−3:0 for

short. The entropy effectively measures the unpredictability of the chant

in the segment from position−3 to position 0. A higher entropy indicates
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a less systematic connection, so we would expect mode 5, for example, to

have higher entropy thanmode 6. Figure 2.6b confirms this.

Next, wemeasure the entropyHt:t+3 in a sliding window of four notes,

starting at any position t and not only t = −3 as we did above. This

allows us to analyze how unpredictable different parts of the chant are,

whichwedo in Figure 2.6a. It is immediately clear that themore formulaic

differentia (t ≤ −4) are more predictable than antiphons (t ≥ 0). But we

also see that themomentwe return to the antiphon, the entropy increases:

H−4:−1 < H−3:0. This suggests that across modes, differentia–antiphon

connections are less predictable than differentiæ, but more predictable

than antiphon openings.

2.6 Conclusions
This chapter presented two large corpora of Christian plainchant, the

Python library chant21 which allows them to be used in music21, and

two case studies. First, we showed that phrase contours in the Grego-

Base Corpus confirm themelodic arch hypothesis. Second, we show that

the connection between differentiæ and antiphon openings is less pre-

dictable than the connection between notes within differentiæ, but more

predictable than within antiphons. Moreover, the relation differs across

modes. Both case studies only scratch the surface and raise further ques-

tions. We look again at differentiæ at the end of chapter 5, when classify-

ing the mode of chants, and discuss melodic contour in muchmore detail

chapter 6 and chapter 8. Those chapters broaden the perspective and look

at melodic shapes in different musical traditions. But to do so, we need

moremusic.
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data and code All data and code have been made available online:
• Cantus Corpus is available at github.com/bacor/cantuscorpus.
• GregoBase Corpus is available at github.com/bacor/gregobasecorpus.
• Chant21 can be found at github.com/bacor/chant21.
• For data and code related to the case studies, see github.com/bacor/DLfM2020
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Catafolk

C
ross-cultural computational studies often face an abun-

dance of nothing: data scarcity. Two studies by Savage et al.

(2015) andMehr et al. (2019) are a case in point. Both rely

on global samples to study the variety of music across the

world. Although the studies differ in many respects, they

have in common that they include atmost a few songs fromeach tradition:

Savage et al. (2015) used 304 recordings with a broad geographical spread

from theGarland Encyclopedia ofWorldMusic, whileMehr et al. (2019) used

only 118 songs covering a representative sample of societies.

Such samples may allow one to investigate musical diversity across

cultures—themain objective of both studies—but notwithin cultures. A

few songs can after all only accurately describe within-culture variability

when one assumes that there is none: a problematic assumption that

Savage and Brown (2013) have called the “one culture = onemusic”model.

Describing diversity within a tradition usually requires a large local sample

of its music. Such samples exist, but those widely available do not add up

to a global sample—let alone a representative one.

Consider the Essen Folksong Collection (Schaffrath, 1995), perhaps the

go-to corpus for cross-cultural musical scores. It contains large numbers

of both German and Chinese folksongs that form an attractive contrast.

The collection has accordingly been used in many studies, from cognitive

to computational musicology, but—I suspect—usually not for principled,

but practical reasons: other collections may not have been as readily avail-

able. In contrast, comparative research from the 50s and 60s, like the

work of Mieczyslaw Kolinski (e.g., 1959, 1965a, 1965b), relied on a more

varied range of musical traditions. The properties of interest were directly

tabulated from the source publications,whichmeant a lot ofmanualwork,

but also a thorough understanding of the sample.

In that respect, the Essen Folksong Collection is not an ideal alternative.

Where, for example, do the Chinese folksongs come from? Who collected

them,where, andwhen? Are they all songs, or do they include instrumental



Registry structure

boehme-altdeutsches-liederbuch/0.0.1

densmore-nootka/0.0.1

densmore-nootka/0.0.2

corpus.yml Corpus metadata

index.csv Metadata about all songs

README.md Description/notes on the corpus

src/ Python code to generate index.csv

index.py

additional-metadata.csv

...

pinck-verklingende-weisen/1.1.0

figure 3.1 – Architecture of
Catafolk. Catafolk consists
of a registry holding the
metadata of all corpora,
a Python package, used
amongst others to generate
the registry, and a website to
make the metadata easily
accessible. At the core is a
common schema, the set
of metadata fields used by
Catafolk.

melodies? Indeed, even the ‘German’ folksongs are rife with ambiguities,

as Andrew Brinkman explains (Brinkman, 2020, 2021). There are mis-

matches between the songs in the collection and the songs in the source

books, and it is unclear why the collection is divided into sections the

way it is. More problematically, we do not know on what basis Schaffrath

added information, such as a genre classification or phrase boundaries,

neither of which appear in the source materials.

The relatively poor documentation of Essen contrasts sharply with the

databases used in linguistic typology. Over the last decades, typologists

have gathered vast amounts of research findings in projects such as the

World Atlas of Language Structures (wals) or the newly releasedGrambank.1

1 There are many more
examples, see clld.org for an
overview of cross-linguistic
datasets.

Both datasets describe the grammatical structure of languages using a

vast range of features. Notably, the absence or presence of every feature is

accompanied by a reference to ensure the reliability of the data. Taking

inspiration from linguists and hoping to address the issues raised above,

I started to organize my research data more systematically. The project

that grew out of that, Catafolk, is the topic of this interlude.

3.1 Catafolk
Catafolk aims to bridge the divide between sparse global samples and

dense local samples by combining already available corpora. Since not all

corpora may be freely shared, it instead focuses on providingmetadata

in a consistent format. The project is primarily a proof of concept that

grew from how I organizedmy research data. As illustrated in Figure 3.1,

Catafolk consists of three components bound by a common schema: a

registry, a Python package, and a website.

component 1: the registry The registry is aGit repository containingmeta-

data about all corpora and their songs. The most important part of the
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registry is the index file, which lists the metadata for each entry in the cor-

pus. The index is automatically generated by pulling data frommultiple

sources. Somemetadata can be extracted from the source files (e.g., kern

files), some data is constant for the corpus, and some may be included

in additional metadata files. The code used to generate an index is also

included in the registry. Every corpus is also versioned, and pastmetadata

versions are kept in the registry.

component 2: a python package The second component of Catafolk, the

Python package, assists in generating the index files. It ensures that the

Catafolk schema (see below) is respected andmaintains consistency in

the registry. The package is currently used tomaintain Catafolk but could,

in the future, also be used to loadmetadata from the registry or organize

locally installed corpora. Going further, one could turn Catafolk into the

equivalent of a package manager: a corpus manager that would down-

load both the corpora and their metadata while taking care of versioning,

validating the integrity using checksums, and so on.

component 3: the website The third component is the Catafolkwebsite,

whichmakes the registry available via a graphical interface. The website

builds a knowledge graph from the index files, which allows one to query

all corpora in Catafolk simultaneously.2

2 The website uses Gatsby,
a static site generator, and
React. Gatsby internally
constructs a knowledge
graph that can be queried
using the query language
GraphQL.

But the website primarily aims

to improve the accessibility and documentation of the corpora. For that

reason, I have also included references to source publications and, where

possible, linked individual songs to publicly available scans of the sources.

the catafolk schema Central to all these three components is theCatafolk

schema: the list of metadata fields used by Catafolk. Catafolk’s ontol-

ogy currently contains 61 fields, spanningmusical data such as title, key,

tempo, or tune family to metadata on the collectors, encoders, or copy-

rights. More technical fields, such as file paths andmd5 hashes, are also

included so that the integrity of the corpus can be verified. Entries are

geocoded as much as possible and linked to Glottolog, D-Place, eHRAF,

and possibly to scans of the source publications. The fields in the schema

are inspired by the metadata fields in the Kern Humdrum format, with

various additions based on the Natural History of Song corpus.

3.2 Corpora
Catafolk is publicly available at bacor.github.io/catafolk. The project is

in an early stage but already contains metadata for 15,507 songs from 22

datasets. The vastmajority of those are symbolic transcriptions fromKern-

Scores, the Densmore collection (Shanahan & Shanahan, 2014), and the

Finnish Folk Tunes collection (Eerola & Toiviainen, 2004). In particular,

the following two collections will be used later in this dissertation.
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the essen folksong collection As discussed in Brinkman (2020) in more

detail, the origins of the collection go back to 1982, when Helmuth Schaf-

frath started collecting folksongs in a format knownas theEssenAssociative

Code (EsAC). This resulted in the publication of 6,255 folksongs in 1995.

After Schaffraths death in 1994, Ewa Dahlig-Turek coordinated the EsAC

collection, to whichmuch Polish and Chinesemusic has been added since.

In 1995, David Huron converted the Essen Folksong Collection to his new

**kern format, which is available via KernScores (kern.humdrum.org).

Parts of the Essen Folksong Collection have been included in Catafolk

but as separate corpora, corresponding to the source publications. For

example, Catafolk contains the following three large collectionsofGerman

folksongs (from the essen/europe/deutschl directory in Essen):

• deutscher liederhort This is a collection of 1700 German folk songs,

originally collected by Ludwig Erk and later edited by Franz Magnus

Böhme (Erk & Böhme, 1893a, 1893b, 1894). This corpus corresponds to

the erk directory in Essen.

• altdeutsches liederbuch A collection of 309 folk songs collected by

FranzMagnus Böhme (1877). This corpus corresponds to altdeu1 and

altdeu2 directories.

• volksthümliche lieder der deutschen A collection of 704 German

folk songs published by Franz (Böhme, 1895). This corpus corresponds

to boehme directory.

the densmore collection Frances Densmore was a very prolific collector

of Native American music. Employed by the Bureau for American Eth-

nology from 1907 onwards, she embarked on many field trips, making

thousands of recordings from all over the United States (Neubarth et al.,

2018; Shanahan & Shanahan, 2014). Many of these have been transcribed

and published in her books (Densmore, 1910, 1913, 1918, 1922, 1929a, 1929b,

1932, 1939, 1943, 1957, 1958). After Paul von Hippel, David Huron, and

Craig Sapp transcribed some of these books in Humdrum, Shanahan and

Shanahan (2014) transcribed all remaining books andmade these avail-

able as theDensmore Collection. Besides recordingmusic, Densmore also

drew up extensive tables listing the frequency of various musical features

(e.g., scale, tempo, or mode). She used these to compare the music of

various peoples. I have transcribed some additional metadata fromDens-

more’s tables and added it to Catafolk.

There are ethical concernswhenusing recordings of this kind. As Shana-

han and Shanahan (2014) point out, Densmore “lacked formal training as

an anthropologist, and her attitude toward her subjects in the early part

of her career is often described as condescending and patronizing.” Some

music may have been intended for particular occasions, not for broader

display. Throughout this dissertation, I refer to Native American peo-

ples using the names and spelling used nowadays rather than the names

Densmore used.
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Although Catafolk has proven helpful for the present dissertation, it is

somewhat unsatisfactory that the usual suspects currently still make up

for the largest part of it. Many collections are missing, even very obvious

ones, such as the Meertens Tune Collections or the two chant corpora

introduced in chapter 2. Curating a catalog like Catafolk turns out to

be a lot of work that, in the end, requires a much larger scale. But I am

convinced that the effort is worthwhile and hope that Catafolk will be an

inspiration to further map themusical treasures out there.

We now return to one such treasure: plainchant. The question that

motivated the study in the next chapter was inspired by folksong research.

Songs are perhaps the obvious ‘units’ of cultural transmission inmusic.

Indeed, one of the central notions in folksong research is that of a tune

family: a group of closely related songs that are the product of a process

of cultural change. But onemay wonder whether there are smaller units,

perhaps analogous to how phrases, words, andmorphemes in language

are every smaller replicators? What are, in other words, the smallest units,

larger than notes, in a musical tradition?

data and code Most of the code is publicly available:
• The Catafolk website can be found at bacor.github.io/catafolk.
• The source code of the Catafolk website is available on github.com/bacor/catafolk
• The registry can be found at github.com/bacor/catafolk-registry
• The Python package has not been released yet.

reference Catafolk was presented at SysMus21: Cornelissen, B., Zuidema, W., & Burgoyne,
J. A. (2021b). Catafolk: Cataloguing folk music datasets for comparative musicology. In J.
Stupacher & S. Hagner (Eds.), Proceedings of the 14th International Conference of Students of
Systematic Musicology (SysMus21). doi 10/jx9r.
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chapter.
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Modes
Manymusics across the world are structured aroundmulti-

plemodes, which hold a middle ground between scales and

melodies. We compare three approaches to classifying mode

in a corpus of 20,865medieval plainchant melodies from the

Cantus database. The traditional ‘textbook’ approach and the

only prior computational approach work well, but largely re-

duce modes to scales and ignore their melodic character. We

propose a model using tf–idf vectors that reaches 93–95% F1
score onmode classification, compared to 86–90% using tra-

ditional pitch-basedmethods. Importantly, it reaches 81–83%

even whenwe discard all absolute pitch information and re-

duce a melody to its contour. Our model strongly depends

on the choice of units: i.e., how themelody is segmented in

motifs. If we borrow the syllable or word structure from the

lyrics, themodel outperforms all of our baselines. To better

understand how the classifier works, we propose an attribu-

tionmethod,witness coloring, that highlights the motifs that

strongly contribute to the resulting classification. Taken to-

gether, our results suggest that, like language, plainchant is

made up of ‘natural’ units, in our case, between the level of

notes and complete phrases.
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figure 4.1 – Overview of
this study. We compare
three approaches to mode
classification in a corpus of
Gregorian chant. Cantus con-
tributors have transcribed
a vast number of melodies
from medieval manuscripts
(a). We classify mode based
on the final, range, and ini-
tial in the classical approach
(b), and based on pitch (class)
and repetition profiles in the
profile approach (c). Finally, in
the distributional approach (d),
we use tf–idf vectors where
we tweak two parameters:
the segmentation, or which
melodic units we use (e),
and the representation (f),
where we gradually discard
information about the scale
when we move from pitches
to contours. In this way, we
aim to capture the melodic,
rather than scalar, aspect of
mode.

1--d--d--dfd-dc---f---g--ghgf-ghg-hj--h---
Be-a- ta es Ma- ri- a

manuscript

volpiano

rendering
neumes

A. Melodic transcriptions in Cantus

1--d--d--dfd-dc---f---g--ghgf-ghg-hj--h-

-d--d--dfd--dc--f--g--ghgf--ghg--hj--h-

|.|.|.³₃-₂|.|.|.²₂₂²²₂²²|.|.|independent intervals

|–|–|–⌃⌄–⌄|⌃|⌃|–⌃⌄⌄⌃⌃⌄⌃⌃|⌄|⌄|dependent contours

|.|.|.⌃⌄–⌄|.|.|.⌃⌄⌄⌃⌃⌄⌃⌃|.|.|independent contours

-d--d--dfddc--f--g--ghgfghghj--h-
-dddfddc--f--gghgfghghjh-
-d-d-d-f-d-d-c-f-g-g-h-g-f-g-h-g-h-j-h-
-dddfdd--cfgghg--fghghj--h-
-dddf--ddcfgghgf--g--hghj-

1-gram

6-gram

word

syllable

neume

na
tu
ra
lu

ni
ts

ba
se

lin
es

pitch (class) profile
k-NN classifier

tf–idf vectors
linear SVC classifier

final, range, initial
random forest

Legend pitch in Volpiano; intervals in semitones upor down; and contour
up ⌃, down ⌄ or the same-. Omitted interval/contour to previous unit: .

F. Melodic representations

E. Segmentations

B. Classical C. Profile D. Distributional

poisson

|d|d|dfddc|f|g|ghgfghghj|h|f|pitch

|-|-|-³₃-₂|⁵|²|-²₂₂²²₂²²|₂|₄|dependent intervals
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4.1 Introduction
In his seminal Grove entry, Harold Powers et al. (2001) points out a remark-

able cross-cultural generalization: many musics are structured around

multiplemodes. Modes are often associated with the major–minor dis-

tinction inWesternmusic. Still, there are much richer systems of modes:

examples include Indian raga, Arabicmakam, Persian dastgah, pathet in

Javanese gamelanmusic, and themodes of Gregorian chant. The specifics

obviously vary, but all these phenomena share properties with both scales

andmelodies and are perhaps best thought of as occupying the contin-

uum in between (Powers et al., 2001). On the one hand, a mode is more

than a scale: it might imply a hierarchy of pitch relations or favor the

use of characteristic motifs. On the other hand, it is not as specific as a

particular tune: a mode instead describes a melody type. Modes are of

central importance to their musical tradition, both as means to classify

the repertoire and as practical guides for composition and improvisation.

Characterizingmodes computationally is, therefore, an important prob-

lem for computational ethnomusicology.

Several studies have investigated automatic mode classification in In-

dian raga (Chordia&Rae, 2007; Gulati et al., 2016), Turkishmakam (Atalay

&Yöre, 2020; Ünal et al., 2012) and Persian dastgah (Abdoli, 2011; Heydarian

&Bainbridge, 2019). These studies can roughly be divided into two groups.

First, studies emphasizing the scalar aspect of mode usually look at pitch

distributions (Atalay&Yöre, 2020; Chordia&Rae, 2007; Heydarian&Bain-

bridge, 2019), similar to key detection inWesternmusic. Second, studies

emphasizing themelodic aspect often use sequential models or melodic

motifs (Gulati et al., 2016; Ünal et al., 2012). For example, Ünal et al. (2012)

train n-grammodels for 13 Turkish makams and then classify melodies by

their perplexity under these models. Going beyond n-grams, Gulati et al.

(2016) use motifs, characteristic phrases, extracted from raga recordings

to represent every recording as a vector of motif-frequencies. They weigh

counts, amongst others, by the inverse document frequency, which balances

highly frequent motifs and favors specific ones.

This chapter focuses on automatic mode classification inWesternme-

dieval plainchant. This has rarely been studied computationally, even

though the term (if not the phenomenon) ‘mode’ originates there. At

first glance, mode in plainchant is relatively clear, though certainly not

entirely unambiguous. With a second glance, it has amusicological and

historical depth that inspired a vast body of scholarship going back over

one thousand years. The music is indeed sufficiently distant in time from

most other musics, includingWestern classical and popmusic, to provide

an interesting cross-cultural comparison. And for once, data is abundant,

thanks to the immense efforts of chant scholars.

Computational studies of chant havemostly been concerned with op-

tical music recognition of medieval manuscripts: the simssa project, for
example, has used such systems to transcribe plainchant from the Cantus

database (Helsen et al., 2014). Recent ismir conferences have also included
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analyses of Byzantine plainchant (Panteli & Purwins, 2013) and Jewish

Torah tropes (van Kranenburg et al., 2011), and a comparison of five Chris-

tian chant traditions using interval n-grams (van Kranenburg &Maessen,

2017). But, to the best of our knowledge, the study by Huron and Veltman

(2006) is the only computational study addressingmode classification in

chant. The study used pitch class profiles and thus approachedmode as

a mostly scalar phenomenon. Wiering (2006) later criticized the study,

partly for ignoring themelodic character of modes.

We aim to revisit this work on a larger dataset andmodel the melodic

aspect of mode. Concretely, we compare three approaches to mode classi-

fication:

1. classical approach: based on a chant’s range, final, and initial note.

2. profile approach: uses pitch, pitch class, and repetition profiles,

inspired by Huron and Veltman (2006).

3. distributional approach: uses tf–idf vectors based on various seg-

mentations and representations of the melody.

Besides evaluating mode classification, we ask how the task is solved.

Using a linear classifier for thedistributional approachallowsus to explain

themodel behavior inmoredetail. Inparticular,wepropose anattribution

method to visualize which motifs contribute to the classification of a

chant.

4.2 Methods
The design of this study is visualized in Figure 4.1.

data: the cantus database We use chant transcriptions from Cantus

Corpus (v0.2), a dump of the Cantus database tailored for computational

research containing 497,071 chants (see chapter 2). We here only consider

chants that have aVolpiano transcription (63,628 chants) and further filter

out chants with incomplete or non-standard transcriptions, without a

completemelody,without ‘simple’mode annotation, and exact duplicates

(see supplement a2). This resulted in 7031 responsories (966,871 notes,

avg. length 138 notes) and 13,865 antiphons (825,143 notes, avg. length

60 notes). We fixed a 70/30 train/test split for all datasets and only used

training data in exploratory analyses. Cantus often contains multiple

variants of any particular melody, transcribed from different manuscripts

(see supplement a10). Onemaywonderwhether the simple train/test split

is sufficient, orwhether evenmore care is needed to avoid overlapbetween

suchmelodic variants in the train and test sets. This is a difficult issue that

also applies to other musical corpora (e.g., the Essen folk-song corpus),

and for which there is no perfect solution. To assess the effects, we have

also repeated our experiments on a subset without variants, which we

discuss in supplement a12.
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figure 4.2 – Classical fea-
tures. The classical approach
uses the final, range, and ini-
tial to determine the mode.
The overall distribution for
each mode (1–8) is clearly dif-
ferent, although not entirely
without ambiguity.

B BC CD DE EF FG GA ABb B BC CD DE EF FG GA ABb

1 2

3 4

5 6

7 8

initialhighestlowestfinal

According to the transcription guidelines, flat symbols are transcribed

only once, directly before the first flattened note. We replace the first and

later flattenednotes by the corresponding accidental, a Volpiano character

that sits at a specific staff line. In this way, flat notes are also encoded by

a single Volpiano character. We discard characters like clefs and pausas

and only retain the notes, accidentals, and boundaries (hyphens). The

resulting string is used in our three classification experiments, which we

now discuss.

classical approach: final, range, initial The first approach is motivated

by the classical procedure for mode classification. We extract three fea-

tures from every chant: the final pitch, the range (lowest and highest

pitches), and the initial pitch. Theory suggests that the final alone should

give an accuracy of roughly 50%, and adding the range should further

increase that by roughly 50% if there is no ambiguity. Figure 4.2 shows the

feature distributions for all modes. It suggests that there is some ambi-

guity, and so numbers will be a little lower. For this task, we use random

forest classifiers (Breiman, 2001), which aggregate multiple decision trees.

Training details of all models are discussed below.

profile approach: pitch (class) profiles The second approach is inspired

by Huron and Veltman (2006). Using 97 chants from the Liber Usualis,

they compute average pitch class profiles (the relative frequency of each

pitch class) for eachmode and then classify chants to the closest profile.

We take a similar approach and use k-nearest neighbor classification,

where k is tuned (see paragraph 1). In a commentary, Wiering (2006)

argued for using actual pitches rather than pitch classes, as the pitches an

octave above the final have a very different role than those an octave below

it. We follow that suggestion by also computing pitch profiles (Figure 4.3).

Finally, we propose a repetition profile aiming to describe which notes

function like a recitation tone. For every Volpiano pitch qwe compute a

repetition score r(q), which is the relative frequency of direct repetitions,

and collect these to get a repetition profile. Formally, if a chant has pitches
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figure 4.3 – Pitch profiles.
These show the relative
frequency of every pitch
in the eight modes. Again,
although the distribution of
individual modes is clearly
distinct, some residual
ambiguity remains.

B BC CD DE EF FG GA ABb B BC CD DE EF FG GA ABb

1 2

3 4

5 6

7 8

p1,… , pN , then r(q) = #{i : pi = q and pi+1 = q}/(N − 1) since there are
N − 1 possible repetitions.

distributional approach: tf–idf vectors Our third approach aims to cap-

ture themelodic aspect ofmode. In short,weuse abagof ‘words’model (cf.

Gulati et al., 2016) and tweak two parameters: the segmentation (which

melodic units to use as ‘words’) and the representation (pitches, intervals,

and contours). The idea is to discardmore andmore information about

the scale and see if we can nevertheless determine themode.

First, the units. For chant, three natural segmentations suggest them-

selves: one can segment the melody (1) at neume boundaries, but also

wherever we find (2) a syllable or (3) a word boundary in the lyrics. Given

the close relationship between text and music in chant, there is some

reason to believe that these are meaningful units. Conveniently, all of

these boundaries are explicitly encoded in Volpiano by a single, double,

and triple dash, respectively. Note that these natural units are nested:

neumes never cross syllable boundaries. We compare the natural units

to two types of baselines. The first is an n-gram baseline where we slice

themelody after every n notes, for n = 1,… , 16. The second is a random,

variable-length baseline. Here the melody is segmented randomly, but in

such a way that the segment length is approximately Poisson distributed

with amean length of 3, 5, or 7. We stress that all these units are proper

segmentations: units do not overlap. In particular, we choose not to use a

higher-order model (using n-grams of units) because we are only inter-

ested in comparing different segmentations.

Second, the representation. We represent melodies in three ways: as a

sequence of pitches, intervals (the number of semitones between succes-

sive notes), and contours (the direction of movement between successive

notes: up, down, or level).1

1 In other chapters, ‘contour’
denotes any description
of the general shape of a
melody (see chapter 6 and
chapter 8). In this chapter,
it however denotes one
particular representation,
also known as Parsons’ code
(Parsons, 1975).

There is one complication when segmenting

sequences of intervals or contours: we introduce dependencies between

the units. All units would, for example, start with the interval from the

previous unit. We call this a dependent segmentation. Alternatively, you

could discard the intervals between units to obtain an independent version.

This effectivelymakes every unit one interval shorter. We analyze both the

independent and dependent versions. Since we use a text-based represen-
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figure 4.4 – pca of tf–idf fea-
tures. Principal component
projection of the chant vec-
tors, after projecting them
on the eight decision axes of
the corresponding svm classi-
fier. This helps separate the
modes in the visualization
since each decision axis is
optimized to separate one
mode from the rest (see also
section 4.4). The top row
plots principal components 1
against 2; the bottom row 4
against 5. Even in the contour
representation, the modes
are fairly clearly separated.

A Pitch B Interval (indep) C Contour (indep)

PC
1
vs

PC
2

PC
4
vs

PC
5

PC
1

PC 0

PC
4

PC 5

1 2
3 4
5 6
7 8
running ex.

tation,we found it convenient to start all independent units (including the

first) with a dot to keep the segmentation identical across representations.

You can think of the dot as marking the omitted interval to the previous

unit.

Third, themodel. Given a segmentation, we represent every chant by

a vector of unit frequencies, but weighted to favor frequent, yet specific

units: units that do not occur in too many chants. A standard way of

doing this in textual information retrieval is using term-frequency inverse-

document-frequency (tf–idf) scores, whichmultiply the frequency of a term

in a document (tf) by the inverse document frequency (idf). The latter is

computed as

idf(t) = log ( 1+ n

1+ df(t))
+ 1, (4.1)

where n is the total number of documents and df(t) is the document fre-

quency: thenumber of documents containing term t. Intuitively, this factor

decreases the scores of common terms that occur inmany documents. We

use at most 5000 features and found it was important not to set a mini-

mum ormaximum document frequency. Finally, we determine the mode

of a chant by feeding its tf–idf vector to a linear support vector machine.

We discuss the classifier in more detail in section 4.4.

In sum, we analyze 22 segmentations (3 natural ones, 16 n-grams, 3

random) and 5 representations (pitch and dependent/independent in-

terval/contour), giving a total of 110 conditions. Figure 4.4 shows a low-

dimensional projection of the tf–idf chant vectors, colored by mode, in

some of these conditions.

training We tune every model using a randomized hyperparameter

search with 5-fold stratified cross-validation. That is to say that we ran-

domly sample hyperparameters from a suitable grid (determined by ex-

tensive manual analyses) and determine their performance using 5-fold

cross-validation on the training set, wherewe ensure the class frequencies
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figure 4.5 – Classification results. Weighted F1-score for three approaches to mode
classification, using two chant genres: responsories and antiphons. Scores are averages
of five independent runs of the experiment. The classical approach (a) using the final,
range, and initial reaches F1-scores of 90% and 86%. The profile approach (b) works
better for antiphons (90% vs. 86%) and somewhat worse for responsories (88% vs. 90%).
As Wiering (2006) suspected, pitch profiles outperform pitch class profiles by a small
margin. The distributional approach (c) reaches the highest F1 scores of 95% on both
responsories and antiphons. The choice of segmentation (vertically) is crucial: classification
is improved by using ‘natural’ units, word-based units in particular, rather than n-grams.
As the representation (horizontally) becomes cruder, from pitches to intervals and finally
to contours, the task becomes much harder. But, when using word-based segmentation,
performance remains high.

are similar in all folds. We use the hyperparameters yielding the highest

cross-validation test accuracy to train the final model. All models were

implemented in Python using scikit-learn (Pedregosa et al., 2011).

4.3 Results
Figure 4.5 gives support-weighted22 The retrieval scores for all

classes (modes) are averaged,
weighted by the number of
instances in each class.

averages of F1-scores obtained on the

full test sets for all three approaches. The scores are averages of five in-

dependent experiment runs using different train/test splits. Standard

deviations were small and are included in supplement a11. We now com-
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pare the three approaches and then discuss the effect of representation

and segmentation on the distributional approach.

approaches: distributional approach works best First of all, we report

the highest classification scores with our distributional approach using

pitch representations: an F1-score of 93% for responsories and 95% for

antiphons. This corresponds to an error reduction of 30–60% compared

to the classical approach (90% and 86%). The classical approach confirms

the rule of thumb: the range and final are very informative features. Us-

ing only these, we obtain F1-scores of 89% and 79%, which are further

increased by also adding the initial. The profile approach outperforms the

classical approach for antiphons (90% vs. 86%) but is outperformed for

responsories (88% vs. 90%). Our results supportWiering’s (2006) intu-

ition that pitch profiles more accurately describe mode than pitch class

profiles, but the effect is small: it increases F1 scores by 2–3%. Repetition

profiles appear to be less useful for both genres.

Our results in broad strokes validate the classical and profile approach,

which both peak around a 90% F1-score, using simple features. The dis-

tributional approach improves this, up to 95% using complex features.

Importantly, we now show that the distributional approach maintains

high performance when using interval or contour representations.

representations: contours are sufficient We find that the classification

task gets harder when the representation gets cruder, from those based

on pitch, to intervals and finally to contours (Figure 4.5c, horizontally).
This was anticipated: cruder representations are obtained by discarding

information from every unit. Shorter units are impactedmore by this in-

formation loss. For example, the performance with 1-grams drops by over

75%whenmoving from pitch to independent contour representation. At

that point it performs at majority baseline (a 7% F1-score for responsories

and 12% for antiphons).3

3 Every unit is identical for
1-grams in the independent
interval and contour represen-
tation: a dot representing
the omitted contour to the
previous note. The majority
class for both responsories
and antiphons is mode 8,
taking up 21% and 28% of
the test data respectively
(see supplement a4). This is
precisely the accuracy of the
model in those conditions.

For longer units such as 10-grams, the drop is

not as dramatic (around 10%). However, this comes at the cost of a com-

paratively low performance using the pitch representation, presumably

because of increasing sparsity.

Natural units, however, escape this trade-off. Word-based segmen-

tations perform consistently well, dropping only 3% below the classical

baseline using the highly impoverished independent contour representa-

tion. In contrast to the other representations, the contours do not carry

any information about the scale: the same contour can be reproduced

in any scale. Apparently, we can discard the scalar aspect of mode and

still classify it: contours alone contain sufficient information for mode

classification. The success of pitch-based methods might obscure that

mode is as much amelodic phenomenon as a scalar one.

Interestingly, the earliest chant notation used unpitched neumes that

mainly described the contour of the melody—not the exact pitches. Our

results reinforce the idea that contour is highly informative—so informa-
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tive that given a mode, text, and contour, an experienced singer could

reconstruct the chant melody.

segmentations: natural units work best. Ourmost important result is

that natural units (neume, syllables, and words) yield the highest classi-

fication performance among all the representations we considered. The

4- and 6-gram baselines also reach top F1-scores in antiphons, but only

whenwe use representations that include information about pitch. Fur-

thermore, the success of natural units cannot be explained solely by their

length. In responsories, neumes, syllables, and words are on average 2.3,

3.0, and 7.1 notes long, respectively (see supplement a6). Yet, the per-
formance of these natural units is consistently higher than n-grams of

comparable length. The performance of the natural units is also consis-

tently higher than that of the variable-length Poisson baselines, which are

intended tomimic the overall distribution of natural lengths but ignore

musical and textual semantics.

A few other observationsmerit discussion. Firstly, although neume and

syllable segmentations behave differently for responsories, they behave

similarly to each other for antiphons. The reasonmay be that neumes and

syllables more often coincide in antiphons. Antiphons are lessmelismatic

than responsories (i.e., they use fewer notes per syllable, 1.5 to be precise).

Secondly, both the n-grams and the Poisson baseline perform better on

antiphons than on responsories, possibly because the n-grams are more

likely to end up being coincidentally aligned with the natural units the

less melismatic the genre.

controlling for melodic variants We repeated all experiments on a sub-

set of the data fromwhich we removedmelody variants (see supplement

a12 for details). In terms of the number of notes, thismeant a 75%and66%

reduction in data size for responsories and antiphons respectively. The

performance of all models decreased on this subset, and for responsories

more than for antiphons. Our main findings that contours are sufficient

and that natural units work best across representations stand. We do

observe some reorderings: some already high-performing n-grams in an-

tiphons, for example, slightly overtake word segmentations, although

only for pitch and dependent interval representations. The distributional

approach works best for antiphons regardless of including or excluding

chant variants. Still, for responsories, the distributional approach drops

slightly below the classical approach on the subset (where the profile ap-

proach is worst). These findings might be explained by increased sparsity

in the smaller dataset: natural units in responsories are, after all, longer.

4.4 Attribution
The distributional approach to mode may classification work well, but

how so? This section aims to explain and visualize in detail why a chant
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figure 4.6 – Decision axes.
The eight axes describe
the decision planes of the
classifier. Each axis discrim-
inates one mode from the
rest. The modes are better
discriminated in the pitch
representation (a) than the
contour representation (b),
consistent with our classifica-
tion results.

Axis 1

A Pitch representation

mode 1

B Contour representation

Axis 2 mode 2

Axis 3 mode 3

Axis 4 mode 4

Axis 5 mode 5

Axis 6 mode 6

Axis 7 mode 7

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Axis 8

0.1 0.0 0.1 0.2

mode 8
Projection of the
running example

is classified to a particular mode. More precisely, we highlight which

motifs contribute to a particular classification and, in that way, attribute a

classification to specific motifs.

Recall that we represent chants as high-dimensional tf–idf vectors. We

then used a linear support vector machine to determine eight decision

boundaries: hyperplanes in that high-dimensional space. Each bound-

ary separates chants of a particular mode from chants of the seven other

modes in a so-called one-vs-rest classification scheme. A linear decision

boundary is represented by a decision vector orthogonal to it, that essen-

tially points out where that boundary lies. But this vector also defines a

decision axis along which one mode is discriminated from the rest. Fig-

ure 4.6 illustrates the decision axes: it shows the distribution of chants

after projecting them on each of the eight decision axes. Chants whose

mode corresponds to the decision axis tend to get positive projections,

while the other chants get small negative values.

Computing the projection of a chant on a decision axis amounts to sum-

ming the chants’ tf–idf scores, weighted by the coefficients of the decision

vector. Since tf–idf scores arepositive, if the k-th coefficient orweighthas a

large positive value, then the correspondingmotif can strongly contribute

to a large projection. The k-th motif may, in other words, be important

for classifying the chant to the axis’ mode. Consequently, we use the coef-

ficients of the decision axes as ameasure of class-wise feature importance.

It is a ‘class-wise’ measure in the sense that it measures the importance

for classifying to one particular class—or mode, in this case. We discuss a

‘general’ variant in supplement a13,4

4 Counter-evidence, in the
form of strongly negative
weights, does not contribute
to the class-wise impor-
tance measure discussed
here. In the general version,
both strong evidence and
counter-evidence indicate
importance.

. where we also discuss using tf–idf

scores as a measure of feature importance.
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figure 4.7 – Attribution
using witness coloring. Our
attribution method visually
indicates to which motifs
the classification can be
attributed. It treats every
motif as a witness for the one
mode from which it gets the
highest class-wise feature
importance. We color motifs
according to the mode they
witness: mode pairs share a
color, but plagal modes have
a dashed line above them.
The opacity indicates the
feature’s importance: darker
features are more important.

Mode 7

1---gh--g---gh--g---gh--gh---g---f--fhk---k-jklk-lm--l---

-l---mn--mk--lm---l--klmk-kj7--ghkg-hg-gf---fhkk--jklkjh-jkjh---

-g--ghjhgh--hg---3---g--g--hj---jk--j---l--k--lkj7-kjhg-hg---

-l--lmlk---klm--lmlm--j---k---mn--mk--lml---ljkjh-jk--k---

Ec- ce e- go mit- to vos si- cut o- ves

in me- di- o lu- po- rum di- cit

do-mi- nus es- to- te er- go prudentes

cut ser- pen- tes et sim-pli- ces si- cut

-jklkjh-jkjh77--ghjhgh--hg---4
co- lum- be

si-

mode 1 & 2 plagal modes
(2, 4, 6, 8)
are overlined

feat. importance

mode 3 & 4
mode 5 & 6
mode 7 & 8

-hj-

To visualize the importance of amotif, we look up its importance scores

f1,… , f8 for all eight modes. If the motif corresponds to index k, these

scores are the k-th entries of the eight decision vectors. One of the scores,

say fm, will often bemarkedly larger than the others so that the occurrence

of that motif can be seen as evidence for mode m. Differently put, the

motif witnessesmodem. This motivates our visualizationmethod, witness

coloring, that colors themotifs according to themode they witness. The

importance scores are visualized by varying the opacity. As distinguishing

transparencies is difficult (Cleveland&McGill, 1984), we scale the opacity

cubically between 10% and 100%, to make the most important motifs

stand out.

Wehave implemented the attributionmethodusingChant21. Figure4.7

shows the result for the mode 7 responsory Ecce ego mitto vos (D-KNd 1161,

folio 108r), using a syllable segmentation and a pitch representation. The

visualization highlights syllablemotifs that contribute to a (correct)mode

7 classification, such as o- on the first line, po-, rum-, di- and -cit on the

second line. The last motif also occurs in the final line. In supplement a14,
we further illustrate our visualizationmethodusing antiphons. Antiphons

are sung before and after a psalm and endwith so-called differentiæ that

set the final words of the psalm (seculorem amen) and connect it back to

the antiphon. As discussed in section 2.5, differentiæ are fairly indicative

of mode, and accordingly, they are highlighted by our attribution method

in interval and contour representations.

4.5 Discussion and Conclusion
In this paper, we analyzed three approaches to mode classification in a

large corpus of plainchant: (1) the classical approach using the final, range,

and initial; (2) the profile approach using pitch (class) profiles and (3) the
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distributional approach using a tf–idf vector model and various segmen-

tations and representations. We found that the distributional approach

performs best and that it canmaintain high performance on contour rep-

resentations if using the right segmentation: at word boundaries, in this

case. Analyzing the distributional approach in more detail, we proposed

an attributionmethod that visualizes whichmotifs are important for the

classification.

Although our results are specific to one corpus of medieval music and

one classification task, we believe our conclusions are of wider relevance.

We often fall back on n-grams because they are well-understood and easy

touse. Amorenatural segmentationmaybeharder toobtain, but if finding

them can have such a large effect on a relatively simple task like mode

classification, their advantages may be even stronger for more complex

tasks.

A first next step could be to explore whether lyrics yield equally useful

units in other vocal musics. As noted, plainchant’s link between text and

music is particularly tight. This at least suggests that the text may be

useful in other types of chant, like Byzantine chant or Torah trope. For

folk melodies designed to standard poetic meters, it is not as obvious

whether lyrics would help or hinder the identification of useful units. This

is worth investigating, as characteristic motifs and repeated patterns are

commonly used in computational folk-song studies, particularly for tune

family identification (Janssen et al., 2017; Volk & van Kranenburg, 2012).

Our results raise another question: is chant indeed composed by string-

ing together certain melodic units, much like a sentence is composed

of words? It has been suggested (and disputed) that Gregorian chant is

composed in a process of centonization and that a chant is a patchwork

of existing melodic chunks called centos. A recent study used the tf–idf

weighting to discover centos in Arab-Andalusian music (Nuttall et al.,

2019). This raises the possibility that classification using natural units

may have been successful because they indeed are the building blocks,

the centos.

Computational studies of plainchant are still quite rare, and we hope

this study shows that chant is an interesting repertoire that can yield

insights of broader relevance. The immense efforts of chant scholarsmean

that data are abundant. In short, we think chant can aid the development

ofmodels that applybeyondWestern classical andpopmusic andembrace

the true diversity of musics around the world.
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Neural chant

C
hant scholarship is an intimidating field of study for an

outsider. The literature breathes an intimate familiarity

with practices, repertoires, andmanuscripts I do not have.

Therefore, my approach to chant has not been a humanistic

close reading but a computational distant reading. But our

reading in the previous chapter relied on a questionable assumption: we

treated chants as unordered bags of motifs and ignored their temporal

order. In this interlude, I would like to revisit the same chant—Cantus

Corpus v0.2—but using a model that does respect temporal order. For

this, we will use a long short-termmemory (lstm) network (Hochreiter &

Schmidhuber, 1997), rather than, say, a state-of-the-art transformer. One

might motivate this choice in various ways—inspired by previous work, a

study in interpretability, or just a proof of concept—but I hope this short

interlude will motivate itself.

5.1 Recurring connections
Neural networks are quite literally graphs of computations. Every node

in this graph has a certain activation, computed as a weighted sum of its

inputs, which is then transformed in a nonlinear way. Recurrent neural

networks are designed to model sequential data and to that end, contain

nodes with a connection to themselves. Besides ordinary inputs, these

nodes also receive their own output from the previous time step as an

input. An lstm is a recurrent network, but its recurrent units are not plain

nodes. Each unit contains a so-called cell state that can retain information

over a long time span and influences the unit’s output. The cell state is

updated based on the input via multiple gates, whose parameters are

learned when training the network.

How does training work? We present the network with a Volpiano

character, represented by a numerical index, and ‘ask’ it to predict the



1---dfe--dcd---f--gf--ed-fhg--d---d--h---h---kl--h--gh---
klkjh--kh---gH--h---h--g-hhgfe-efgf-gfed--ed---cd--defef--
ed---<eos>1---f--fg---gf---h7--k---kj---g--j--
k---h---gf7--gh--j---h--g---4---k--k--j--k--h--g---
<eos>1---g--gk--h7---g--hk---kJ--g---fE---f--g---d--
e--f---gh--h---g--g---4---k--k--j--kj--h--g---<eos>1---hf--
f--hk7---kkl--k---kl---lk--jh---ghg--f--fgjhg--hg-gfg--
gf---<eos>1---g--h---h--g--g---h--g---h--g7---h--gf--g---
h--k--jg---jk--h---hg--g---g---g--e--g---g---f--e---
d---e--fg---g--g7---4---k--k--j--k--h--g7---<eos>1---d--
cd7-fff-g--g---f--fe---fg--ef---defe--ed---d---cd--d---
d---defedc--d--fefgf--fede--dc7---3---f--fgh---

End of song token

A. Concatenated chants

1---dfe--dcd---f--gf--ed-fhg--d---d--h---h---kl--h--gh---klkjh--kh---gH--h---h--g-
k---h---gf7--gh--j---h--g---4---k--k--j--k--h--g---<eos>1---g--gk--h7---g--hk---
f--hk7---kkl--k---kl---lk--jh---ghg--f--fgjhg--hg-gfg--gf---<eos>1---g--h---h--g--
d---e--fg---g--g7---4---k--k--j--k--h--g7---<eos>1---d--cd7-fff-g--g---f--fe---

1---dfe--dcd---f--gf--ed-fhg--d---d--h---h---kl--h--gh---klkjh--kh---gH--h---h--g-
k---h---gf7--gh--j---h--g---4---k--k--j--k--h--g---<eos>1---g--gk--h7---g--hk---
f--hk7---kkl--k---kl---lk--jh---ghg--f--fgjhg--hg-gfg--gf---<eos>1---g--h---h--g--
d---e--fg---g--g7---4---k--k--j--k--h--g7---<eos>1---d--cd7-fff-g--g---f--fe---

sequence length

In
pu
ts

B. Batches

Ta
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s
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LSTM

LSTM

Decoder
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1

- - - d f e

- - - d f

C. Architecture

figure 5.1 – The neural chant
model. The model consists
of two recurrent layers with
lstm units (c) and is trained
to predict the next character
given an input character.
To do this efficiently, all
chants are concatenated (a)
and divided up in parallel
batches (b) of a fixed length.

next character. For that reason, the network’s final layer has as many

nodes as there are characters. Those nodes can output how probable it is,

according to themodel, that a character is the next one. When training,

we knowwhat the next character should be. That allows us tomeasure the

error in the predictions of themodel. The crucial trick is to differentiate

the error signal and determine in what direction to change the model’s

parameters so as to make the correct prediction more likely. We then

update the parameters of the network by taking a small step (given by the

learning rate) in that direction.

But how are the predictions computed precisely? We start with a char-

acter (see Figure 5.1c). The first step is to embed (the index of) a character

into a high dimensional space; this is also known as the encoding step.

While the indices are meaningless, the embedding hopefully organizes

them in a useful or evenmeaningful way. Next, the embedded character

is passed to the recurrent layer, together with the previous state of the

hidden layer. This is where the network integrates the current input with

what it has seen before. We feed the output through a second recurrent

layer before decoding those outputs to a distribution over the vocabulary

that indicates the most probable next character.

Instead of presenting the network one character at a time, it is more

efficient to present it with small batches of inputs (see Figure 5.1a and b).
First, we concatenate all chants, separated by <eos> tokens that mark the

end of a song.1

1 We shuffle the order of
the chants—but not their
characters, of course—at the
beginning of each epoch.

Then we split this sequence into B parts (the batch size)

of equal length and form a batch by taking S characters (the sequence

length) from each of the B parts. You can think of this as sliding over the

corpus in B parallel parts. We also truncate the flow of errors back in time

to S steps. This is known as truncated backpropagation through time and

means that there is no explicit error signal for more than S time steps.

Although we train the network to predict the next character, that is not

the task we are after. To predict the next character, it turns out that the

model needs to build up meaningful representations of the input data

(a form of representation learning). Suppose we train it on next-word

prediction. In that case, the embedding spacemight, for example, become

a model of word meanings, and the network’s internal representations

may start to show sensitivity to grammatical categories, which may be
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figure 5.2 – Overview of
models and results. We
trained a large and small
model on next-character
prediction using three rep-
resentations: raw Volpiano,
intervals, and contours.
The large volpiano model
clearly learns the Volpiano
syntax: only 1,7% of the sam-
ples from the model are not
parseable. We also trained a
linear svm on a chant’s final
hidden representation to
predict its mode or genre.
This performs better on pre-
dicting genre (final column)
than mode (columns before
that).

Model Parsing
errors

Mode classif. Genre
clf.Name Emb. Hid. Params F1 sota

volpiano-small 8 64 56k 11,4% 63%
93–95%

85%
volpiano-large 32 256 838k 1,7% 84% 86%
interval-small 8 64 55k — 49%

89–92%
66%

interval-large 32 256 833k — 56% 71%
contour-small 8 64 53k — 37%

81–85%
77%

contour-large 32 256 825k — 42% 77%

detected in the outputs of the recurrent units. Something like this is what

we are really after: rich chant representations. Afterward, we can also use

the network for something else. Suppose we present the network with

a character to start with, like a clef, and then sample the next character

from themodel’s predictions. Append the result to the clef, repeat, and

themodel is composing a new chant.

technical summary Let me summarize all that in more technical terms.

Themodel architecture and its implementation are inspired by Gulordava

et al. (2018). We train a 2-layer lstm on next character prediction using a

cross-entropy loss. We split the training data intomini-batches consisting

of 32 sequences of 64 characters. The learning rate is dynamically adjusted

using Adam with default parameters. For each of the three representa-

tions, we first broadly tuned the embedding size, hidden size, sequence

length, learning rate, batch size, initialization range, dropout, and gradi-

ent clipwithHyperOpt usingASHA scheduling and thenmore finely tuned

the learning rate and sequence length using a population-based training.

We then fixed the batch size to 32, the initialization range to (−0.15,0.15),
the dropout to 0.15, and the clipped gradients to 0.5. All models are im-

plemented in PyTorch (Paszke et al., 2019), and tuning is done using Ray

Tune (Liaw et al., 2018). We train two classes of models, small ones with

an embedding size of 8 and a hidden size of 64, and ‘large’ ones with an

embedding size of 32 and a hidden size of 256. All models were trained

to predict the next character, but using three different chant representa-

tions from chapter 4: plain volpiano, intervals and contour (see also
Figure 5.2).2

2 I used the dependent
interval and contour repre-
sentation; see chapter 4.

Let’s see how those models learn to chant.

5.2 Learning to chant
step 1: volpiano syntax To test whether the volpianomodels were train-

ing properly, I generated short samples after every few hundred batches,

starting from an end-of-song token. In the training data, that token is

always followed by the clef of the next chant and some space: something

like “<eos>1---.” Initially, the predictions are nonsensical, but gradually

the model learns to start chants with clefs (see Figure 5.3). A more typical

hyphenation pattern also starts to appear: groups of, say, four hyphens no

longer occur. It appears, in other words, that the character model learns
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<eos>4fch-gock-g-g--k----f-ef-g---

4fch-gock-g-g--k----f-ef-g---

<eos>1----f--f--f---a7--f--f--dc--

1----f--f--f---a7--f--f--dc--

<eos>lmm-mkjklkmkkjhh-hhj---hklk-h

lmm-mkjklkmkkjhh-hhj---hklk-h

<eos>1---fE--fg--hf--f---dg7--cCfg

1---fE--fg--hf--f---dg7--cCfg

<eos>1---d--cc--d--d---df--g---gh-

1---g--h---hh--hk--g---g--g--

Sample 1

<eos>)K-dgff73-kd----g-dh--fkj7kkg

)K-dgff73-kd----g-dh--fkj7kkg

<eos>nL-g--h---l---kj--hk7--h--h--

nL-g--h---l---kj--hk7--h--h--

<eos>Ld---d---cDf---fF--d--d---dc-

Ld---d---cDf---fF--d--d---dc-

<eos>1---fE--fg--hf--f---dg7--cCfg

1---fE--fg--hf--f---dg7--cCfg

<eos>1---f--g---ghg--f--g---h---h-

1---f--g---ghg--f--g---h---h-

Sample 2

<eos>3H47j-------<eos>kfj--hfl-d-h-e7-

3H47j-------<eos>kfj--hfl-d-h-e7-

<eos>N1---d--fd--d-fd---ghg---hhh-

N1---d--fd--d-fd---ghg---hhh-

<eos>1---ddf---d---gi--k--k--k--lk

1---ddf---d---gi--k--k--k--lk

<eos>1---g---g--h--g---d---fh--f--

1---g---g--h--g---d---fh--f--

1---g--fg--gh--g---e--ff---f-

1---g--fg--gh--g---e--ff---f-

Sample 3

1

5

10

15

30

Ep
oc

h

figure 5.3 – The model learns to start chants with a clef. Shown are three samples (hori-
zontally) generated by a small model after several training epochs (vertically). The model
generated 30 characters, starting from the end-of-song token <eos>. After a few epochs, it
has learned to start chants with clefs and use typical hyphenation. Samples are from a very
small model (embedding size 2, hidden size 32), but I saw this behavior consistently.

the Volpiano syntax. In fact, I canmeasure quite precisely howwell it does

so, using my Volpiano parser from Chant21 (see chapter 2). Of the 1000

samples generated by the large Volpiano model, only 1,7% could not be

parsed. This closely approaches the< 1% transcriptions in Cantus that

could not be parsed. The small Volpianomodel fares not so well, with over

11% of its samples failing to parse.

step 2: pitch for beginners How does the network represent Volpiano

characters? In Figure 5.4, I visualize the character embeddings in two

dimensionsusingumap (McInnes et al., 2018). Characters of the same type,

such as notes, liquescents (smaller ornamental notes), or bars, tend to

cluster. But it appears the embeddings are also ordered according to their

pitch: going through the liquescents (orange) in the small model from

left to right, we encounter a-b-c-d-f-e-g-k-j-h. Pitches (blue) from top to

bottom also appear to have some order. Indeed, we can find embedding

dimensions forbothmodels that correlatewith thepitchofnote characters

(see the bottom row of Figure 5.4). The correlation is much stronger for

the smaller model, which aligns with my informal impression that small

embeddings tend to be more clearly organized. Both models, to some

degree, appear to order notes and liquescents by their pitch, and they

learn this solely from how characters are distributed in chants.
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figure 5.4 – Character embeddings of notes correlate with their pitch. The top row shows a
umap projection of the character embeddings for (a) volpiano-small and (b) volpiano-
large. The points are colored according to their category, and sizes reflect the log frequency
of the character. For both models, the bottom row plots the MIDI pitch of note characters
against the embedding dimension that best correlates with pitch. This suggests that both
models, and the smaller one in particular, learn to represent the pitch of characters.

step 3: pitch from intervals It may be unsurprising that pitch is helpful

whendealingwithmelodies, but howabout pitch intervals? The interval-
largemodel is trained to predict sequences of characters like “-₃²¹₁₂₂²₂”

that (we know) encode interval sizes. Does the model also learn this?

To find out, I pass an unseen chant through the model and record the

hidden state of layer two after every character. This turns a chant into a

sequence of 256-dimensional vectors. We now ask two questions. First,

canwepredict the current interval from these vectors (e.g., the current step

moves two semitones up)? And second, can we predict the current pitch

relative to the starting pitch (e.g., we are now five semitones above the

starting pitch)? To answer the second question, themodel must represent

interval sizes and compute their cumulative sum.

And indeed, it seems as if the model is doing something like that (Fig-

ure 5.5). I trained a linear regressor to predict the interval or the pitch

from the hidden representations. This is known as probing or diagnostic

‘classification’ (Veldhoen et al., 2016): a way to assess whether a network

represents certain information. In this case, intervals canbewell predicted

(R2 = 0.78), but even pitches are fairly predictable (R2 = 0.55). Figure 5.5
shows two examples of predictions compared to the targets. The contour
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-----₂⁴³₁¹₃₂²³₃³₅----²₅¹²₂₁₂²¹<eos>
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figure 5.5 – An interval model learns to track pitch throughout a melody. The interval-
large model is trained on sequences of characters (a) that represent the interval size to the
following note (b). By summing up all successive intervals, the actual pitches (relative to
the starting pitch) can be obtained (c). It appears that the model learns to represent this
information: using linear regression on the hidden representations after every step, we can
reasonably well predict the interval (blue) and even the pitch (orange) (d–e).

of the predicted pitches roughly follows the actual contour, even after 50

steps or more. Example 2 illustrates what can go wrong: the predicted

pitch contour lies above the target.

step 4: modes and genres Next, we turn to more high-level structures:

does the model learn to represent complete chants in a useful way? To

find out, I passed unseen test chants through the volpiano-largemodel

and recorded the hidden state of the second layer after seeing the entire

chant. This produces a 256-dimensional chant vector. I then trained linear

support vector machines on these vectors to predict the mode and the

genre. The latter reaches F1 scores of 71% and 77% for the interval and

contour representations, and even 85% for the Volpiano representation

(Figure 5.2).3

3 I have no good explanation
for why intervals here score
worse than contours and
must leave this to future
work.

But only the latter representation includes hyphenation,

which is quite different in syllabic versus melismatic genres. On mode

classification, larger models outperform smaller ones, but both perform

worse than the tf–idf model in the previous chapter. Then again, we use

only the very last representation, the resulting vectors are smaller than

the tf–idf vectors, and the lstm is not explicitly trained to predict mode.

And so, this is probably not the performance ceiling.

I also visualized the chant vectors using pca and umap and then colored
them according to their mode or genre (Figure 5.6). The first principal

component (horizontal) roughly separates chants according to their genre:
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figure 5.6 – Chants are represented along roughly two dimensions: mode and genre. As
chant vectors, we use the hidden state of the second layer of the large Volpiano model after
processing a complete chant. The top row shows a pca projection, and the bottom row is a
umap projection, colored differently in each column. (a) The model appears to represent
modality, as chants in a cluster appear to have the same mode. Modes appear to correlate
with the second principal component, where the first correlates with the genre, as seen in
(b): the genres responsory (verse) and antiphon are clearly distinguished along this axis.
Overall, clusters appear to be primarily specified by their genre and mode, as shown in (c).

it mainly sets apart antiphons. The second principal component (vertical)

appears to capture modality: the modes are ordered in what seems to

be the same order as the average pitch height of the modes: 7 > 8 >
5 > 6, and so on. All this is consistent with the idea that genre and

mode are central to the organization of the repertoire. The bottom row of

Figure 5.6 shows a reasonably similar umap visualization but highlights a

more local clustering structure. In column c, chants are colored by their
genre-modepair (e.g.,mode4 responsory). The resulting coloring appears

to correspond tomore local clusters.

Although these results are preliminary and requiremorework—the pat-

tern is, for example, less evident in an interval model—the implications

are provocative. It suggests that chants cluster in groups corresponding

to a unique combination of genre andmode. That wouldmean that for

plainchant, the statistical modes in melody space are not melodic modes, but

something like genre-mode combinations. This challenges the hypothesis

that melodic modes correspond to statistical modes. But before abandon-

ing the hypothesis, one could wonder whether modes in other traditions,

such as raga ormaqam, do correspond tomelody clusters. If so, the notion

of statistical modemight still be a valuable operationalization of a cross-
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cultural concept of musical mode. However, it would not correspond to

chant modes in the traditional sense but to genre-mode combinations.

Promising as this line of thought may be, exploring statistical modes in

themelody spaces of other traditions is, unfortunately, well beyond the

scope of this interlude and left for future work.

step 5: chanting I cannot end this interlude without letting themodel

take a final step. After it has learned to produce valid Volpiano, represent

pitch, and distinguishmodes and genres—can it chant? Figure 5.7 shows

the first six chant samples generated by the large Volpianomodel, using

the clef as the initial seed. All of these are valid Volpiano strings that

resemble actual chant in several ways. First, each sample appears to be

either syllabic, with few notes per syllable (example 1, 2, 3, and 6) ormelis-

matic (example 4 and 5), withmanymore notes per syllable. Of course, the

chants have no text, but since the spacing represents boundaries, one can

immediately see that samples 4 and 5 appear denser or more melismatic.

Next, the samples appear to be somewhat modal. Figure 5.7 shows

the predicted mode of each chant, using a majority vote amongst the

tf–idf classifiers from chapter 4 with various segmentations and genres.

Except for example 5, the predicted mode is consistent with the modes

suggested by the final and range of the chants, shown in the last columnof

Figure 5.7. Interestingly, examples 2 and 6—both of the syllabic, antiphon-

like type—include differentiæ: formulae that connect a psalm back to the

beginning of an antiphon (see section 2.5). Both differentiæ appear in the

Differentiæ Database (I have included their ids) and are usually found in

chants with the samemodes as the predicted ones.

The generated chant may not yet convince someone well-versed in

the repertoire—some future ChantGPT no doubt will—but nevertheless

poses excellent puzzles. How can you phrase thematerial? How can you

divide time and stress so that the notes start to make sense andmelodies

spring to life? The possibilities are endless, but some ways of dividing

the melody into phrases seemmuch more compelling than others—to

me, in any case. And that brings me to the next chapter (and its sequel,

chapter 8): how are phrases in melodies structured?

54 Chapter 5 interlude Neural chant



1---f--fed---ef--g--g---gf--d7--fe--dc---d--fg--gF--fg---fgF--e---c---e--g---
e--gh--fe---d--cd--d---h--fhged-edc--d---de7--e---4

1 mode 4 -e- -ch-

2 1---kM--k--kj-klk---h--gf--gh7---h--g--f---gh--h--g--fg--g---k--lk---jh---
kj--hg---hk--h---g--h--g---f---h--k--k--hkg--hg---fE--fg---gh---j--hk--g--fg--
g---g---g--gh--hg--hg---g--e--g--g--f--ef---dc7---d---f--g--hk---k--k---klk--
hg---fg--g--g7---4---g--h--gk--k---3---k--k--j--k--h--g---4

mode 8 -g- -cm-

3 1---f--g--g--f---fe--dc7---dfd--cd--d---d---f--gf-hj--h---h---ghgfd--f---fe7-
-dc---eg---efe--d--d---dc--f---g--h--hg---f---g--h--fe--dc---d--fe--d--d---4

mode 2 -d- -cj-

4 1---jhgh7--k--kl---h--kgg---h--g---h--ghF--fe---c---ed--ggf--g---hh---def-
gfef--fe---3---fghg--g--fgh---gh-h---llk-lmlh-jkh--h---h--k--k--k-klhg-kk-lk-
lk-kj-kl-lkl---k--klkjg-hk-kjh-jkjh7---ghjhgh--hg---4

mode 8 -g- -cm-

5 1---g---g--g--hj-kjhj--jh---h--f--gh--h---fg-hgh--kjhg-jg-gf---g---ffd-ef-
gfed-fd-dc77-de-fg-hg-hhg-efghgf-gfe--de-fef--ed7---4

mode 8 -d- -ck-

6 1---fgh--g--f---g--fE---d--fd-gf--fe---dc--d--fe7--d---d--fE---f---g--g--gf-
--h--ghgf--f---g--hg--fgh---fe--cd--defef--ed---d---d--c--d---d--d---ef--gf-
fe7---d--cd--d---4---h--h--g--f--gh--g---4

mode 1 -d- -ch-

Mode 
predictionEx. Generated chant Final Range

Mode 1 differentia (66d)

Mode 8 differentia (118a)

figure 5.7 – Examples of generated chant. Shown are the first six chants generated by the
large Volpiano model, all of which are valid Volpiano strings. The mode of these examples
was predicted using a majority vote of the tf-idf models with natural units and a pitch
representation from chapter 4. Examples 2 and 6 end with so-called differentiæ (blue) that,
in both cases, correspond to the predicted mode.
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Cosine contours
Melodic contour is central to our ability to perceive and pro-

duce music. We propose to represent melodic contours as

a combination of cosine functions using the discrete cosine

transform. The motivation for this approach is twofold: (1)

it approximates amaximally informative contour represen-

tation (capturingmost of the variation in as few dimensions

as possible), but (2) it is nevertheless independent of the

specifics of the datasets for which it is used. We consider

the relationship with principal component analysis, which

only meets the first of these requirements. Theoretically, the

principal components of a repertoire of random walks are

known to be cosines. We find, empirically, that the principal

components of melodies also closely approximate cosines in

multiple musical traditions. We demonstrate the usefulness

of the proposed representation by analyzing contours at three

levels (complete songs, melodic phrases, andmotifs) across

multiple traditions in three small case studies.
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6.1 Melodic contour
Humans are born with a remarkable sensitivity to melodic contour. This

is dramatically illustratedwhen newborns cry: the cries of German babies

tend to go down in pitch, but those of French babies go up, even if falling

contours are physiologically easier to produce (Mampe et al., 2009). By

imitating the intonation patterns of their mothers’ language, babies take

the first steps towards a spoken language, guided by the exaggerated

pitch contours of infant-directed speech (Wermke et al., 2021). Contour

perception remains central to speech later in life for intonation or even

word distinctions—but it is also a key ingredient of human musicality

(Honing et al., 2015).

In the musical domain, melodic contour describes the overall shape of

a melody while abstracting away from the particular pitches and precise

rhythms. Dowling (1978) famously argued that contour plays an impor-

tant role in musical memory. He suggests that melodies are remembered

as two independent parts: a scale and a contour. On this account, a scale

functions as a ladder “on which the ups and downs of the contour were

hung.” Indeed,when listening tonovelmelodies, contours appear to stand

out more than the exact intervals and influence the perceived similarity

of melodies (Schmuckler, 2016).

Given the importance of contour, this chapter asks for the optimal way

to describe the shape of a melody. How can we capture as much of the

variability in melodic contours as efficiently as possible? One approach

would use a principal component analysis (pca). We empirically show that

the principal components of melodies do not have arbitrary shapes but

closely approximate cosines. We relate this observation to theoretical

results explaining how the covariance structure of certain randomwalks

yields sinusoidal principal components.

Our findings motivate a new contour representation that describes

melodic shape as a combination of cosine functions. The proposed cosine

contour space closely approximates the optimal solution provided by pca
but offers several benefits, such as being data independent. The central

argument for this representation is theoretical, and we leave a systematic

comparison of contour representations for future work. Instead, we dis-

cuss three case studies demonstrating the usefulness of cosine contours.

6.2 Contour representations
Melodic contour has been characterized inmany differentways. First, eth-

nomusicologists and composers have used contour typologies that describe

a small set of contour types. Huron (1996), for example, distinguished

nine types of contours by comparing the initial and final pitches to the

average pitch on themiddle part of a melody. We return to such discrete

descriptions of melodic contour in chapter 8. Second, there are combina-

torial models of contour that rely on the relative ordering of all pairs of
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notes in amelody, summarized in amatrix. Wewill not further discuss

those models here since these expand rather than reduce the representa-

tion, break the linearity of the melody, and are sensitive to local changes

(Müllensiefen &Wiggins, 2012).

Instead, we focus onmore direct representations, such as—third—rep-

resenting contour by a simple sequence of pitches or intervals. Melodies

extracted fromaudio are commonly represented thisway. Various contour

features, such as the range or pitch deviation, can be derived from this and

have successfully been used in classification tasks (Bittner et al., 2017; Bit-

tner et al., 2015; Panteli et al., 2017; Salamon et al., 2012). As we have seen

in section 2.4, melodic contours in symbolic data can also be represented

in this way by using step curves that interpolate the notes (Müllensiefen &

Wiggins, 2012; Steinbeck, 1982). This has been illustrated by the black line

in Figure 6.1b.
Fourth, several contour representations can be directly derived from

step curves. Parsons code is a drastic simplification that discards interval

sizes and note durations and only considers the direction of movement

from one note to the next: up, down, or level (Parsons, 1975). We have

encountered step curves and Parsons code in chapter 4. Variants between

these two extremes have also been used by distinguishing various classes

of jump sizes (Müllensiefen & Frieler, 2004). Another related class of

representations only considers salient notes, such asmaxima andminima

(Adams, 1976; Densmore, 1918; Salamon et al., 2012; Steinbeck, 1982). This

often requires special handling of ornaments (Müllensiefen &Wiggins,

2012), possibly tailored to the repertoire.

Fifth, one candescribemelodic contourbyfittinga function. For example,

Müllensiefen and Wiggins (2012) fit polynomial functions to the step

curve and represent the contour using the coefficients. The degree of the

polynomial is chosen per phrase, using the Bayesian information criterion

(bic) to avoid overfitting. Polynomial coefficients are quite difficult to

interpret, however: they change drastically when the degree changes

and can also be sensitive to changes in the data, especially when the

polynomials are not orthogonal and introduce correlations between the

coefficients (collinearity).

Sixth, instead of fitting a function to the contour, one can also decom-

pose the contour and express it as a sum of (orthogonal) basis functions.

Velarde et al. (2016) have usedHaar wavelets as basis functions in musical

pattern discovery. The step-like shapes of those wavelets are well suited

to describe particular melodic patterns but make them less suited for de-

scribing the overall contour. An alternative basis of sinusoidal functions

is implicit in Schmuckler’s use of a Fourier analysis to represent melodic

contour (Schmuckler, 1999).

The contour representationwepropose in this chapter is similar in spirit

and will decompose the contour using cosines as basis functions. This is

motivated by a curious regularity observed in the principal components

of melodic phrases while working on the case study on themelodic arch
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figure 6.1 – Cosine con-
tours represent a melodic
contour as a combination
of cosine functions. (a) A
short melodic phrase illus-
trates this. (b) A piano roll
is interpolated to obtain a
fixed-length vector of midi
pitches (black curve). This
vector is approximated using
a discrete cosine transform
(colored curves). Increas-
ing the dimensionality
(from, say, the blue to the
green line) improves the
approximation. (c) The basis
functions correspond to sim-
ple shapes. This makes the
cosine contour space inter-
pretable, as illustrated in (d)
for the first two dimensions.
Every point in this space
defines a contour shape,
varying in what we call the
descendingness and archedness.
The orange dot represents
the orange contour from (b).
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hypothesis in chapter 2. Before we can explain that regularity, we have to

introduce the data.

6.3 Data
In this chapter, we analyze contours frommusical scores atmultiple levels

of description, from complete songs to phrases and melodic motifs, as

well as two random baselines.

motifs All segmentation levels are readily available in the twoplainchant

corpora introduced in chapter 2: Cantus Corpus and GregoBase Corpus.

The close connection betweenmusic and text in chant suggests a natural

grouping of the notes into words or syllables, and the notationmoreover

suggests an even smaller grouping into neumes. Themotifs corresponding

to neumes, syllables, or words are all extracted fromCantus Corpus (v0.2),

using only the twomost frequent genres: antiphons and responsories.
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phrases Phrase boundaries are not available in the Cantus Corpus, and

we thusextractphrases fromGregoBaseCorpus (v0.3). Asalso explained in

section 2.4, the chant notation used byGregoBase includes explicit breath-

ing marks known as pausas, which we can interpret as phrase boundaries.

Phrasemarkings are also included in the Essen FolksongCollection (Schaf-

frath, 1995). We additionally analyze phrases from German and Chinese

folksongs and focus the discussion on the two largest subsets, which are

also included in Catafolk (see chapter 3): Erk (9782 contours) and Han

(7601 contours).

songs Finally, at the level of complete songs, we look at music from

the Lakota people (also known as the Teton Sioux) made available in

theDensmore Collection (Densmore, 1918; Shanahan & Shanahan, 2014).

Analyses of several other corpora from the Essen andDensmore collections

are only included in supplement b2 to simplify the discussion in the main

text.

random segments Finally, we consider two random baselines: random

segments of melodies and synthetic phrases generated by a randomwalk.

While the latter are entirely generated, the random segments consist of

actual melodicmaterial. The segments are obtained by randomly slicing a

melody into approximately phrase-length parts so that their boundaries

will usually not overlap with actual phrase boundaries (see page 16 for

details).

synthetic phrases Next, to generate the synthetic phrases, we draw the

number of notes K from a (truncated) Poisson distribution to roughly

approximate the length distribution of phrases.1

1 We truncate the distribution
so that K ≥ 3 and use
𝜆 = 12. For more details,
see supplement b1.

Then we draw an initial

pitch x0 uniformly between 60 and 85 inmidi pitch space. In every next

step,wedrawa step size rk froma shiftedBinomial distributionwithmean

zero2

2 We constrain the step sizes
to lie between−12 and+12,
meaning that jumps cannot
exceed an octave.

and let the next pitch be xk = xk−1+ rk . This results in small, approx-

imately normally distributed step sizes. This process yields a sequence of

pitches (x0,… , xK−1): a synthetic phrase.

pitch sequences We convert all melodic material—songs, (synthetic)

phrases, segments, and motifs—to fixed-length pitch sequences, just

as in section 2.4. To do so, we extract the note onsets and pitches (in

quarter notes and midi semitones respectively) and then interpolate a

step function through these points. We sampleN = 100 equally spaced

pitches from the step function and collect those in a pitch sequence x =
(x0,… , xN−1), as illustrated in Figure 6.1b. These vectors form the primary

data analyzed in this chapter. Unlike section 2.4, we do not center the

contours to have a mean pitch of 0. This is sometimes done to make

contours transposition invariant andmore directly comparable (Savage

et al., 2017; Velarde et al., 2016), but the proposed representation elegantly

resolves this problemwithout requiring centering.
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figure 6.2 – Principal com-
ponents of contours are
roughly cosine shaped
across different levels. (a)
shows the pcs as solid lines
and the cosines as dashed
ones. This is a result of the
particular structure of the
covariance matrix (b): matri-
ces of this type have Fourier
basis functions as their eigen-
vectors. This is clearest for
phrases (2) or random seg-
ments from melodies (3).
Crucially, we see the same
effect for synthetic phrases,
generated by random walks
(4). For complete songs (5),
the effect is less clear, prob-
ably due to differences in
typical length (c) and data
size.
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The basic representation makes several common assumptions (e.g.,

Savage et al., 2017; Tierney et al., 2011; Velarde et al., 2016). First, we ig-

nored all rests. Second, we normalize the duration of all contours: both

3-note motifs and 30-note songs are represented by vectors of 100 pitches.

Of course, the relative durations within that melody are retained, so we

should still find simpler contours in shorter fragments. Third, we assume

Euclidean distances between contours. Our analyses require that all con-

tours are embedded in a vector space. Usingmore sophisticatedmeasures

such as dynamic time-warping distance would require us to reconstruct

a space (e.g., using multidimensional scaling), making all analyses less

transparent.

6.4 Principal components of contours
In the introduction, we asked for the optimal representation that effi-

ciently describes most variability in melodic contour. A principal compo-

nent analysis (pca) would be an obvious starting point. The goal of pca is
to find a set of orthogonal axes, the principal components, along which one

findsmost of the variance in the dataset. The axes are described by vectors

from the same space as the original data. And so, if we take a dataset of

pitch sequences, the principal components will be N-dimensional vec-

tors that can themselves be interpreted as pitch sequences. We use this
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in Figure 6.2a to visualize the first four principal components of motifs,

phrases, random segments, and complete songs, all from the plainchant

corpora.3

3 The motifs are responsory
syllables from Cantus Corpus,
phrases are antiphon phrases
from the GregoBase Cor-
pus, and the songs are song
contours from GregoBase
Corpus.

Similar resultswithGerman andChinese folksongs can be found

in supplement b2.
We find that the principal components are highly similar across most

datasets and correspond to well-known contour shapes: descending, con-

vex, and—perhaps—undulating. This can be seen in phrases and random

segments. The effect is weaker for complete songs, especially in smaller

datasets (see the supplement b2). Besides small data sizes, the fact that

songs are much longer also plays a role (see Figure 6.2c). Interestingly,
the pattern is evenmore evident for the synthetic phrases. Since these are

generated by a randomwalk, this suggests that the phenomenon has a

mathematical explanation.

To give that explanation, wemust first describe pcamore formally. We

consider a collection of M contour vectors xm of length N. Denote the

samplemean by x̄ = 1
M ∑

m
xm and the centered data by ̂xm = xm− x̄. The

first principal component of the dataset is then defined as a normalized

vector u1 ∈ ℝD for which the projected data {uT
1 xm : 1 ≤ m ≤ M} has

maximal variance. It can be shown (e.g., Jolliffe, 2002) that this is the case

when u1 is an eigenvector corresponding to the largest eigenvalue 𝜆1 of
the covariance matrix

S = 1
M

M

∑
m=1

(xm − x̄)(xm − x̄)T , (6.1)

so that Su1 = 𝜆1u1. It follows that the projected variance is given by 𝜆1,
the largest eigenvalue. The other principal components similarly emerge

as the other eigenvectors of the covariance matrix.

The covariance matrices (Figure 6.2b) for both randomwalks and our

empirical data have a particular structure: they roughly resemble Toeplitz

matrices, which have fixed values along each of their diagonals. Such co-

variance structures are frequently encountered in spatial or temporal data

when the covariance decreases with the distance between the points (An-

tognini & Sohl-Dickstein, 2018; Gray, 2006; Novembre & Stephens, 2008).

That appears to be the case for the contours: there is a higher correla-

tion between successive pitches and a lower correlation between distant

pitches. As a result, the higher covariances are concentrated along the

diagonal. Again, this is clearest for the phrases and random segments.

We see some deviations for motifs: two blocks in the covariancematrix

and corresponding jumps halfway through the principal components.

This is easily explained by the fact that motifs often span only two notes.

In that case, all pitches in the first half of the contour are then perfectly

correlated, as are pitches in the final half. Crucially, despite such devia-

tions from a perfect Toeplitz structure, the principal components are still

well-approximated by cosines.

If you let a Toeplitzmatrix grow in size, it asymptotically tends towards

a circulantmatrix, preserving properties such as eigenvalues and eigenvec-

tors along the way (Gray, 2006). Circulant matrices have exactly the same
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values in every row but are rotated one step to the right with respect to

the previous row. The surprising result is that all circulant matrices have

the same eigenvectors: basis vectors of the discrete Fourier transform.

For real and symmetric matrices, like covariance matrices, this results in

cosine-shaped eigenvectors of increasing frequency—precisely what we

see in Figure 6.2. We discuss all of this inmore detail in the supplement b2.
In sum, because of a Toeplitz-like covariance structure, the principal com-

ponents of melodic contours will tend to look like cosine functions.

6.5 Cosine contours
Next, we turn this observation, and its explanation, into a proposal for

a new contour representation. The idea is to approximate the principal

components by cosine functions and then project the contours on those

first few cosines to obtain a low-dimensional representation. This is ex-

actly equivalent to taking a discrete cosine transform (dct) of the contour
(Ahmed et al., 1974).

Formally, consider a collection of contours of lengthN as before. We

approximate the k-th principal component uk by a vector vk of the form

(vk(0),… , vk(N − 1))whose entries are given by the cosine function4

4 These basis functions cor-
respond to the most popular
version of the discrete co-
sine transform, dct-ii, for
which fast implementations
are widely available; others
would have been possible
(Strang, 1999).

vk(n) = 𝛼k ⋅ cos
𝜋(2n+ 1)k

2N
. (6.2)

Here 𝛼0 = 1/√N and 𝛼k = √2/N for k ≥ 1 are normalizing constants en-

suring thatvk hasunit norm. Theprojectionof a contourx = (x0,… , xN−1)
on vk is then given by the inner product ck = vT

k
x. Expanding this gives

the usual definition of the discrete cosine transform (dct-ii):

ck =
N−1

∑
n=0

xn𝛼k cos
𝜋(2n+ 1)k

2N
. (6.3)

Conversely, the contour can be reconstructed from the coefficients ck us-

ing the inverse transform xn = ∑N−1

k=0
ckvk(n). Using only D < N coef-

ficients, we define our low-dimensional cosine contour representation as

CD(x) = (c1,… , cD). Note that we deliberately discard c0. This coefficient

corresponds toaflat lineanddescribes theoverall pitchheightof a contour:

precisely what we need to get rid of to make the contour transposition

invariant. In this way, we resolve the centering of contours discussed

above.

Why use this representation instead of principal components? Indeed,

a principal component projection, also knownas theKarhunen-Loève trans-

form in this context, is optimal in several ways (Ahmed et al., 1974; Rao &

Yip, 1990). Not only does it decorrelate the data, but it also packs most

variance in the first few transform coefficients (sometimes called energy

compaction) and minimizes the reconstruction error when using only a

few coefficients. However, the transformation depends on the data. Con-
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figure 6.3 – dct approx-
imates pca.The latter is
the optimal transform, in
terms of the reconstruction
error (a) and the explained
variance ratio (b). The recon-
struction error is the mean
squared error between a
contour and a lower dimen-
sional reconstruction. Note
that data corresponds to Fig-
ure 6.2 and that we did not
discard the first component
c0 of the dct in this figure.
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cretely, the principal components of German phrase contours differ from

Chinese ones. Any choice for using one of the two is arbitrary. In con-

trast, the dct is a principled, neutral solution—that approximates the

optimal transform. In fact, the dct was initially introduced for similar

reasons (Ahmed et al., 1974) and was then found to empirically approxi-

mate pcawell in domains ranging from image to audio (Rao & Yip, 1990).

The current results suggest that the same applies to melodies.

6.6 Evaluation and case studies
We evaluate the proposed contour representation by comparing it to a

principal component transformation to demonstrate that it is close to the

optimum. We further designed three case studies to illustrate its useful-

ness at the levels of (1) song, (2) phrases, and (3) motifs. The case studies

show that the representation is musicologically meaningful, as it allows

visualization of variation (1), a quantitative evaluation of constraints on

variation (2), and accurate classification into traditional categories (3).

For simplicity, we only look at two-dimensional representations in these

case studies, but higher dimensions may be useful in practice.

optimality To empirically verify the claim that the dct approximates

the optimal pca transform, we compute the reconstruction error and the

explained variance ratio using the samedata as before. The reconstruction

error is measured as themean square error between a contour and itsD-

dimensional reconstruction, using either the principal components (pca)
or cosines (dct) as basis functions (so for D = N, the reconstruction is

guaranteed tobeperfect). Figure 6.3a shows that the reconstruction errors

of dct closely approximate that of pca. The error rapidly decreases for the
shorter contours (motifs and phrases), indicating that low-dimensional

representations are already effective. Indeed, to explain 95% of the vari-

ance using cosine contours, you need one dimension for motifs, nine for

phrases, and 61 for songs—this is sometimes called the effective dimension-

ality (Moore et al., 2018).5
5 However, note that Moore
et al. (2018) show that high-
dimensional random walks
can falsely appear to have a
low effective dimensionality.

case study 1: visualizing different traditions Low-dimensional repre-

sentationsof songcontours arenot likely tobevery informative, yet certain
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figure 6.4 – Songs of three
cultures represented in the
cosine contour space. In
a 2D cosine contour space
(a), every point represents
a contour, as illustrated by
a grid of gray contours in
the background. The first
coefficient c1 measures ‘de-
scendingness’ (horizontally),
and−c2 measures ‘arched-
ness’. Three datasets show
substantial variability, as
best seen from the colored
lines that estimate their den-
sity: Lakota songs are more
strongly descending than
German ones. The average
of all contours in a tradition
(b–d) also illustrates this.
Thick black lines show that
average, while dashed lines
highlight a single contour.
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traditions can be somewhat distinguished in just two dimensions. Fig-

ure 6.4 shows song contours from German, Chinese, and Lakota songs.

We observe that the first component c1 of a cosine representation roughly

measures the descendingness of the contour, and, similarly, that −1 ⋅ c2
measures the archedness. Lakota songs often have a strongly descending

overall shape (subplot d), which is reflected in the cosine contours having

relatively high descendingness. Similarly, German songs appear more

arch-like than songs from the other two traditions, translating into lower

values of c2.

case study 2: the melodic arch hypothesis In a second case study, we

show that cosine contours provide a simple way to test the melodic arch

hypothesis (Huron, 1996). Recall that the hypothesis claims that phrases

tend to be arch-shaped or descending (see also Figure 6.5a and b). This
can be reformulated as claiming that c1 (descendingness) and−c2 (arched-
ness) are larger for phrases than for random segments of the melodies.

Comparing Chinese and German phrases, we find that all are significantly

(p≪ 0.001)more descending and arched than the corresponding random

segments (see Figure 6.5c and d). This demonstrates that the coefficients

of the cosine contour representation are musicologically meaningful.

case study 3: mode classification Finally, we revisit the study onmode

classification in plainchant from chapter 4. In that chapter, we suggest

that themode of Gregorian chant can be predicted from contours alone,

in that case using a Parsons code contour representation. We represented

chants with tf–idf vectors of weighted motif frequencies, where motifs

were obtained by segmenting chants in various ways. We repeat these ex-

periments using a two-dimensional cosine representation for the motifs.

There is one technical problem: whereas cosine contours are continuous,
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figure 6.5 – Phrases of Ger-
man and Chinese songs tend
to be descending and arched.
This becomes clear when
comparing the average con-
tours to random segments
from the same melodies (a-
b). To quantify this tendency,
we compare the first (c)
and second (d) coefficients
of their cosine representa-
tions, which can be used to
measure descendingness
(c1) and archedness (−c2)
respectively. Consistent with
the melodic arch hypothesis,
we indeed find that both
these quantities are higher
in phrases than in random
segments.
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the tf–idf model requires a discrete vocabulary of motifs. Therefore, we

discretize the cosine contour space to a grid and effectively treat every

chant as a sequence of grid cells (Figure 6.6c). All in all, this introduces

two new parameters to the experiment: the dimensionality of the cosine

contour and the resolution of the grid. In this case study, we do not tune

these parameters and focus on two-dimensional contours, discretized to

a grid between−20 and 20with a grid size of 1. For ease of reading, the

Figure 6.6b shows the grid only from−10 to 10. The results are summa-

rized in Figure 6.6d. We see an interesting pattern: the cosine contours

outperform the original results for small motifs such as neumes and sylla-

bles but not for words, which formmuch longer motifs. This makes sense:

two-dimensional cosine contours are a relatively crude approximation of

those longer contours but may reasonably approximate short motifs.

6.7 Discussion and conclusions
In this chapter, we proposed a novel representation formelodies using the

discrete cosine transform: cosine contours. Observing that the principal

componentsofmelodies tend tobe shaped like cosines, this representation

approximates the optimal representation in the sense that it packs most

variance in a few dimensions. Cosine contoursmeet several other desider-

ata for contour representations. First, the cosine representation is easily

interpretable, as it presents contours as a linear combination of cosine

functions with intuitive shapes. Second, by changing the dimensionality,

the contour’s abstraction level can be varied, allowing for an arbitrarily

small reconstruction error by includingmore andmore dimensions. Third,

this representation allows one tomap contours at multiple levels—from

motifs to songs—to one shared space. The cosine representation thus

creates a common ground for comparing contours across traditions and

levels. That is possible as, fourth, the representation is independent of the

data and, in that sense, culturally neutral.
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figure 6.6 – Motifs used
for mode classification in
Gregorian chant. (a) A chant
is segmented into motifs
derived from the notation
(neumes) or lyrics (syllables,
words). The blue curves show
the two-dimensional cosine
contours for those motifs. (b)
We discretize the contour
space and represent the
chant as a vector of tf–idf
weighed motif frequencies
(‘grid cell frequencies’). Dots
illustrate the nonzero entries
of this vector for the chant
shown above. (c) The chant is
now a walk through contour
space, but our bag of motifs
ignores the order. (d) Using
these vectors to classify
mode, for the smaller motifs
neumes and syllables, we
outperform our previous
study (chapter 4), which
used a string-based contour
representation (Parsons
code).

1--gh--gh--g--g--gh--g--ghk--kjklklm--l--l--lmlj--l--

10 5 0 5 10

10

5

0

5

10

10 5 0 5 10

10

5

0

5

10

B. tf–idf vector visualized

D. Mode classification results (accuracy)

Responsory Antiphon

ParsonContour repr. Parson CosineCosine

Syllables

Neumes

Words

A. Chant and cosine contours

C. Chant as a walk

52 73 30 50

76 76 35 51

81 59 83 77
0%

100%

w
ei
gh
te
d
av
ge
ra
ge

ac
cu
ra
cy

52 74 30 49

76 79 35 53

81 73 83 83

The observation that principal components of spatial and temporal

data can have sinusoidal shapes is not novel but does not appear widely

known. Indeed, the sinusoidal shapes have been interpreted as genuine

effects rather thanmathematical artifacts. For example, one study inter-

preted gradients in the principal components of human genetic variation

worldwide as evidence for certain migration events in human history

(Cavalli-Sforza et al., 1993). Closer inspection revealed that those gradi-

ents were sinusoidal artifacts analogous to those reported in the present

paper (Novembre & Stephens, 2008). Closer tomir, it has been observed

that the training trajectories of deep neural networks have sinusoidal prin-

cipal components (Lorch, 2016) for the same reason. Again, a detailed

analysis (Antognini & Sohl-Dickstein, 2018) revealed these were artifacts

but accurately reflected the behavior of high-dimensional randomwalks

(Antognini & Sohl-Dickstein, 2018;Moore et al., 2018). We hope this paper

helps to increase awareness of this phenomenon.

The present work only begins to explore this new contour represen-

tation and raises many further questions. One particularly promising

possibility is the application to audio data. In this chapter, we only ex-

plored symbolic data, but the proposed representation equally applies to

acoustic data. One application we hope to explore further is the analysis

of speech intonation using the cosine contour representation. Another

interesting casewould be the analysis of folk song recordings. Folk song re-

searchers have, in various ways, relied on contour to organize repertoires
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(Adams, 1976), and one could investigate whether that categorization

can be partly automated using cosine contours. Finally, various contour

typologies have been used in cross-cultural comparisons (Adams, 1976;

Huron, 1996; Kelkar et al., 2018; Savage et al., 2015; Savage et al., 2012)

but have not been systematically evaluated. The present chapter is the

starting point for such a comparison, which we take up in chapter 8.
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Rhythm triangles

A
nd now for something completely different: rhythm. Over

the last few years, I have often discussed rhythm in a course

on the evolution of language andmusic. Students with lit-

tle musical training understandably struggle with scales or

chords and apparently find rhythm easier to grasp. And if

singing is scary, students are happy to clap along, to the point that they

once performed something like Steve Reich’s Clapping music.1 1 I learned this simplified
version from Gerben Groene-
veld. Two groups basically
clap the rhythm of the words
“ananas, appel, peer, banaan”,
with a rest after every word,
and after every two cycles,
one group injects an extra
“druif” at the end.

In one par-

ticular lecture on rhythm, Iwould often playmusic in differentmeters and

ask them to first clap and then count along. Apparently, counting music is

not something people normally do. But even if students didn’t manage,

they do usually recognize when something is wrong, like counting a waltz

in four. And that exercise is not only fun, but it explains a musical struc-

ture (meter), illustrates how it can vary, and convinces students that they

themselves havemetrical expectations. Butmostly, all of this would be an

upbeat for a story about a fascinating musical space: the rhythm triangle.



figure 7.1 – The rhythm tri-
angle. All rhythm motifs of
four onsets and a fixed total
duration consist of three in-
tervals and lie in a triangular
space (d). The ratio between
the intervals determines
the motifs position in the
triangle. Crosses indicate the
positions of small-integer
ratio rhythms. All this is il-
lustrated for three examples
(a–c). The isochronous motif
(a) with ratios 1:1:1 falls in the
very center of the triangle.
Red lines indicate how to
read the axes for example (b).
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7.1 The rhythm triangle
The story starts around 2003, when Peter Desain and Henkjan Honing

tried to figure out how listeners perceive rhythms. No drummer, however

well trained, will play a rhythmwithmetronomic precision, exactly as a

written score suggests. That’s probably for thebetter: the slight deviations

from a ‘perfect’ rendition, the timing, often bring a rhythm to life. But to

notice the timing one needs a reference, and Desain and Honing reasoned

that categorization provided such a reference. Categorization occurs when

your perception breaks up a continuous phenomenon into a discrete set of

chunks or categories. But what could be the continuous space of rhythms

that wemight discretize?

Desain and Honing (2003) decided to look at all the rhythmic motifs

that you canmake by hitting a drum four times, but in such away that the

time between the first and final stroke is fixed. You can completely specify

such a rhythm by giving the time between the first three onsets: the first

two inter-onset intervals. If the total duration is fixed, the last interval can

be computed from the first two. As a result, all suchmotifs live in a two-

dimensional space that happens to be triangular (see Figure 7.1). What

determines the rhythm of amotif is not somuch the precise duration of

the intervals but the ratios between the intervals. For example, the motifs

with intervals (0.25,0.5,0.25) and (2,4,2) have a different duration or

tempo, but both have the same rhythm: the ratios between the intervals

are the same: 1 : 2 : 1. Every point of the rhythm triangle corresponds to

exactly one such rhythm, and vice versa.

Now, to find out whether listeners categorize this continuous rhythm

space, Desain and Honing (2003) playedmotifs regularly sampled from

the space to conservatory students and asked them to write down the

rhythms they heard. Their responses were very consistent in some parts

of the space and very inconsistent in others. The consistent clumps of the

space centered around small-integer ratio rhythms like 1 : 1 : 1 or 1 : 1 : 2, and
the inconsistent parts were the boundaries in between.
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figure 7.2 – Rhythm priors
in different subject groups
from all over the world (Ja-
coby et al., 2021). Colors
indicate probability density
relative to a uniform distri-
bution. (a) The prior in three
groups of non-musicians
compared to seven groups of
musicians (b). Small-integer
ratio rhythms are high-
lighted by red crosses and
explained in (c). Adapted
from figure 2 from Jacoby
et al. (2021) (cc-by 4.0).
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All in all, the results suggested that these rhythms were perceived cate-

gorically. But just in conservatory students, or also in the general popu-

lation? Unfortunately, the method could not address such questions: it

required highly trainedmusicians who are used to rhythmical dictations.

Around fifteen years later, however, Nori Jacoby and JoshMcDermott real-

ized that you don’t need participants to notate rhythms. It is enough if

they can reproduce a rhythm—again, again, and again.

7.2 Unchaining the triangle
What happens if you pass a sentence around a group of people, each one

whispering it into their neighbors’ ear? Every six-year-old can tell you:

this is the telephone game! Scientists of a particular plumage know this as

iterated learning or serial reproduction and do not consider it a game but an

experimental paradigm. Already in the 1930s, Bartlett showed his subjects

drawingswhich they then had to reproduce frommemory. Whatever they

producedwould be presented to the next subject. In this way, an Egyptian

hieroglyph of an owl would ten subjects later turn into something like a

bin bag before transforming into a cat: a culturally familiar drawing (Xu

& Griffiths, 2010).

Serial reproduction appears to change whatever you start with into

something that seems highly probable to the subjects, something that

reflects their prior expectations.2

2 Such a chain of humans
reproducing something can
be seen as a so-called Gibbs
sampler that estimates the
distribution of their prior
expectations (Griffiths &
Kalish, 2007; Harrison et al.,
2020).

The paradigmhas gone through a revival

during the last two decades, producing a series of equally fascinating and

funny studies. One study had baboons repeat patterns that flashed up

on a grid of buttons and eventually found they were passing on Tetris

shapes (Claidiere et al., 2014)—a good candidate for an IgNobel price.

Other studies have used it as a model of cultural evolution, in particular

in language evolution,3

3 This was the topic of my
master’s thesis (Cornelissen,
2017) and motivated the
original proposal for this
Ph.D. project.

or, like Jacoby andMcDermott (2017), as a tool to

measure complex cognitive biases.

To repeat Desain and Honing’s study with musically untrained par-

ticipants, Jacoby andMcDermott (2017) played randommotifs from the

rhythm triangle and asked them to simply tap along. Whatever rhythm

the participants produced (averaged over ten reproductions) would be

passed on to another participant. In this way, their responses form a walk
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figure 7.3 – Raster plots. A raster plot visualizes motifs of two intervals: the shorter interval
is plotted on the left, the longer one on the right. The points are then ordered vertically,
showing slower motifs at the top and faster ones at the bottom. Roeske et al. (2020) argues
that both music (b) and nightingale songs (c) have categorical rhythms. The flower-like
shape of the raster plots is an artifact: it also appears when plotting random intervals (a).

through rhythm space, and this walk tends to gravitate towards expected

rhythms, in thatway revealing the rhythmical biases of their subjects. The

authors repeated this experiment with both North American and Tsimané

participants. The Tsimané are a Native American people that live in Bo-

livia and have had relatively little contact withWestern music. The study

revealed that their rhythmic prior was strikingly different from those of

the North American participants.

By now, Nori Jacoby has gathered a large network of researchers and

tested a very diverse group of participants from over fifteen countries

(Jacoby et al., 2021). I have reproduced the results from their preprint in

Figure 7.2; you can also find the Tsimané andNorth American participants

there. The steady pulse of the isochronousmotif 1 :1 :1 is present everywhere,

as are 1 : 1 : 2 and its rotations, 1 : 2 : 1, and 2 : 1 : 1. One major source of

variation turned out to be the presence of the 3 :3 :2 rhythm. This is a very

common rhythm inmany Sub-Saharan and South American traditions. It

is extremely prominent inMalinese dancers but entirely absent in Chinese

non-musicians. There you instead see a lot of the 2 : 2 : 1 rhythms (slightly

more to the outside of the triangle). In the group of Malineses musicians,

you can even find modes that correspond to the complex 7 : 2 : 3 ratio,
which themusicians recognized as the rhythm of a popular dance called

Maraka.

7.3 Flowers
While we told this story in Evolamus, it further unfolded in the Music

Cognition Reading Group. In one of ourmeetings, wewere joined by Carel

ten Cate, an expert in birdsong. The reading was a paper by Tina Roeske

et al. (2020) that analyzed the intervals between syllables in the songs of

thrush nightingales and zebra finches, and compared these with inter-
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figure 7.4 – Two alternatives
for raster plots: phase and
ratio plots. In a phase plot
(a), the first interval is plot-
ted against the next interval.
Blowing up the space near
the origin transforms this
into a ratio plot (b). Both
plots are arguably easier to
read than raster plots (Fig-
ure 7.3b).
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vals between notes in recordings from several musical traditions:4

4 Most of the music came
from the Interpersonal Entrain-
ment in Music Performance
corpus (IEMP; Clayton et
al., 2022), which contains
recordings, in various styles,
of individual instruments
playing in larger ensembles.
All of the recordings are pub-
licly available, together with
onsets of all instruments.

Indian

raga (8 pieces/performances), Cuban salsa (40), Uruguayan candombe

(39), Malian Jembe (46), Tunisian stambeli (9), Persian zarb, andWestern

‘piano’ music.5

5 The IEMP corpora contain
fewer recordings: there are
for example only 5 songs
in the Cuban salsa and
son corpus. They might
have counted individual
instruments. Their Western
piano music consists of
performances of Bach’s music
from the maestro dataset

The study claimed that categorical rhythm—the use of a

discrete set of rhythms—is not unique to humanmusic, but also found in

the songs of nightingales, although not in zebra finches.

At least as attractive as this claim were the beautiful visualizations.

Flower-shaped figures complete with stems and petals somehow visual-

ized rhythmic motifs of two successive intervals. These raster plots repre-

sented eachmotif by two points on the same horizontal line: the smaller

one of the two intervals is shown on the left, and the larger one on the

right. Allmotifs are then sorted by their total duration, so that slowmotifs

are on the top, and fast motifs at the bottom of the plot. Beautiful as they

may be, their flower-like shape is an artifact. A similar shape appears

when you plot random sequences of intervals. What is informative about

these plots is the patterningwithin the flowers, which is not only relatively

small but also difficult to interpret. It is, for example, hard to identify the

lines on which all motifs with the same ratio, say 2 : 1, fall.
The raster plots puzzled the reading group. Wouldn’t it be easier, Henk-

jan Honing wondered, to create a phase plots? In such a plot, you show

one interval horizontally and the next one vertically (see for example Rav-

ignani et al., 2016). Indeed, phase plots seem to be easier to read (see

Figure 7.4), as different diagonal lines now correspond to different ra-

tios, and the further youmove from the origin, the longer the duration of

themotifs becomes. You could also blow up the space near the origin to

transform a phase plot into a ratio plot, which shows the duration of a pair

vertically against the ratio of its intervals horizontally. The paper also did

something like this, but ratio plots are probably still more intuitive.

7.4 Scattered triangles
But instead of two-interval motifs, why not add a third and plot all motifs

of three successive intervals in a rhythm triangle? To plot motifs with
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varying total duration in a rhythm triangle, you would have to normalize

the total duration so that you are effectively plotting the ratios between

the intervals. The phase plots however showed that duration is clearly

a relevant parameter: you find different types of motifs at slow versus

high tempos. There is a simple solution: show all motifs in the triangle

with a scatter plot, and use a color scale to visualize their duration. On

the following pages, I show triangle plots for all of the datasets analyzed

by Roeske et al. (2020).

The resulting plots raise all sorts of questions. Do the different clusters

in the music corpora correspond to different instruments? Or perhaps to

different songs?6

6 It is easy to produce plots
that answer those questions
from the original IEMP
corpora: see supplement c1
for Cuban salsa and son
triangles per song or per
instrument.

Or why are some triangles, like Western piano music,

asymmetrical? If you rotate it by 60 degrees, you don’t get the same pat-

tern. What are the purple clusters in candombe? Why do we see a vertical

band in jembemusic? And why indeed do we see the same in nightingale

song? And what about the zebra finches? Roeske et al. (2020) find no

discretization in their songs,7

7 They write that “rhythms
were not discretized across
zebra finches, even within
a colony.” They observe a
“a roughly unimodal distri-
bution of rhythms, with a
prominent mode at 1 : 1 ratio”,
but looking at the triangle
plot, this seems wrong.

while the triangle shows an abundance of

discretization, across different timescales. Carel ten Cate suggested that

these clusters may correspond to songs of different individuals.8

8 Preliminary analyses of
another dataset indeed
confirm this.

Andwhat about small-integer ratios? This is often cited as a universal

tendency, yet Roeske et al. (2020) write that “a statistically significant

tendency to produce 1 : 2 ratios was detected only inWestern piano and

Indian raga performances”. And “no significant tendency to produce 1 :2 or
1 : 3 ratios was detected in any othermusic, but inMalian jembe, we found

a significant tendency to avoid 1 : 3 rhythms and favor [non-small-integer

ratios] instead” (my emphasis). Indeed, the triangle plots of jembemusic

contains some clusters that do not correspond to a small-integer ratio,

and the same applies to Uruguayan candombe. My aim is not to address

all these issues here, but to illustrate how visualization may raise new

questions, and hopefully help to address them. And so let’s see what else

we can plot—surely, humans and nightingales are not the only species

with categorical rhythm.

figure 7.5 – Rhythm triangles show the rhythmic inventories of musical datasets and
vocalizations of two bird species (pages 81–84) . Plots show the data from Roeske et al.
(2020). A sequence of intervals is split into overlapping motifs of three intervals each. The
ratios between the intervals determine the location in the triangle, and the color indicates
the total duration. Darker motifs are slower, lighter ones faster. Small-integer ratio rhythms
are indicated by crosses. Most music datasets (a–g) show clusters, although these are
least pronounced in Persian zarb (g). The zebra finch (h) plot shows a very fine yet clear
clustering structure, especially when split out in duration ranges of 100ms (j). Nightingale
songs (i) have less distinct rhythmic clusters, but the motifs are clearly not uniformly
distributed either.
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figure 7.6 – Rhythms in the song of the lemur Indri Indri appear to be categorical (De
Gregorio et al., 2021). Their vocalizations form phrases, and intervals that fall between
phrases are roughly twice as long as those within phrases. For example, a motif of three
intervals with types within-within-between has a ratio around 1:1:2 (wwb, orange in b). The
clusters appear to fall just beside the small-integer ratio rhythms. Finally, there is a slight
difference between rhythms in male and female productions (c).

7.5 Singing primates
The work by Tina Roeske and colleagues inspired Chiara De Gregorio et al.

(2021) to look at the rhythm of indri vocalizations. The Indri indri is a

lemur, a primate species native toMadagascar, known for its particularly

loud singing duets. The name “lemur”, according toWikipedia, is derived

“from the Latin lemures, which refers to specters or ghosts that were ex-

orcised during the Lemuria festival of ancient Rome.” Ironically, lemurs

themselves have almost been exorcised from this planet: they are critically

endangered. The 39 individuals that De Gregorio et al. (2021) studied are,

in fact, around 1% of all indri left. Analyzing recordings of their duets, the

authors found that the inter-onset intervals in their vocalizations are not

uniformly distributed but cluster around the ratios 1 : 1 and 1 : 2.
The rhythmic categories can be seen in the rhythm triangles in Fig-

ure 7.6. In particular, I colored the motifs by their type in subplot b. Indri
songs consist of phrases, and De Gregorio et al. (2021) classified each in-

terval as either falling within (w) a phrase or between (b) two phrases

(or between two isolated notes). This divides motifs of three intervals

into eight possible types: within-within-between (wwb), within-between-

within (wbw), and so on. Every cluster in Figure 7.6b clearly corresponds
to such a type. The blue wbw cluster lies mostly right of the integer ratios

1 : 2 : 1, which corresponds to a short(ish)-long-short motif. The orange

rhythms of type wwb are short-short(ish)-long, and the green ones (bww)
are long-short-short(ish). Indri vocalizations, in short, appear to use two

duration values: a long one between phrases and an approximately twice

as short one within phrases.

Science journalists jumped on this story: “Singing lemurs have a dis-

tinctly human sense of rhythm, study finds”, The Guardian wrote. Al-

though I applaud the media attention from a conservationist point of
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of corresponding syllables in the adult repertoire (UPS = Undifferentiated proto-syllables).
We show the categories separately (b) as well as combined (c), which suggests that there
are slight differences in the rhythm of different categories. Neutral vocalizations are for
example more isochronous (lower nPVI) than affiliative ones (large nPVI). The nPVI scores
are averaged over te six syllable trains in each category.

view, it seems overly enthusiastic. A rhythmic repertoire of two dura-

tion values—in recordings of multiple individuals spanningmore than

a decade—seems rather limited. Rhythmic categories in humanmusic,

meanwhile, are extremely flexible: they vary across styles, within styles

across songs, and within songs across instruments. And so while the

finding that indri vocalizations contain rhythmic categories is certainly

interesting, labeling it “distinctly human” seem premature.

On a more technical note, the triangle plot in Figure 7.6 also shows

that there is less isochrony in the data than the paper appears to suggest.

An isochronous rhythm is a steady beat where the intervals between all

onsets are the same. And while isochronous pairs of intervals (1 : 1) are
indeed common in indri vocalizations, three successive intervals of equal

duration (1 : 1 : 1) are almost absent. This can be seen by looking at the very

center of the triangle, which is relatively empty.

In fact, you can use the distance between a motif and the center of

the triangle as a measure of isochrony: the closer to the center, the more

isochronous amotif is. In the triangle, we are looking at motifs of length

3, but you can similarly define (n-gram) isochrony for other lengths. Inter-

estingly, for motifs of length n = 2, the average isochrony is essentially

the opposite of the normalized pairwise variability index (nPVI), a metric

that was originally introduced to measure durational contrasts in speech,

but that has also been used to study music.9

9 See Condit-Schultz (2019)
for a critical evaluation.

The rhythm triangle thus

suggests a novel rationale for the nPVI: it is exactly proportional to how

un-isochronous the average rhythmic motif of length 2 is. I explain all of

this in more detail in supplement c2.
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figure 7.8 – Rhythms in vocalizations of the sperm whale and two bat species (Burchardt
& Knörnschild, 2020). The click trains of sperm whales (A) are used for echolocation and
are extremely regularly timed (note that the plot zooms in on the center). The social
vocalizations of both bat species (B and C) are also strongly isochronous, be it to a lesser
extent.

7.6 A bestiary of triangles
The nPVI has recently been used in a number of studies that address how

isochronous or beat-like certain animal vocalizations are. Since the data

in these studies has beenmade publicly available, we can use it to test our

novel metric of isochrony. But first I briefly discuss four of the studies and

visualize the original data in rhythm triangles.

The first study concerned babbling bats. Producing speech sounds

requires very fine control over your articulatory muscles, and one idea

is that babbling (“da-da!”) allows us to gain that kind of control: an

articulatory workout. Onemay expect more species to have these practice

periods if they at least modify their vocalizations based onwhat they hear

from others—if they are so-called vocal production learners. And indeed,

something like babbling is common among songbirds. Knörnschild et al.

(2006) also reported babbling in sac-winged bats (Saccopteryx bilineata).10

10 The bats are named after
sacs in their wings in which
males brew their signature
smells from “genital and
gular secretions.” If you
wonder how they do so,
consult Voigt et al. (2005).

These bats have a large vocal repertoire, consisting of 25 different syllables,

which combine to form ten types of vocalizations.

Before acquiring the adult repertoire, the bats go through a babbling

phase, that according to a recent study by Fernandez et al. (2021) shares

many key characteristics of babbling in human infants. The presence of

a regular beat appears to be one of those commonalities. Based on nPVI

scores, the authors conclude that “four of the five different syllable train

categories [...] had a regular beat”. Figure 7.7b visualizes those categories,
and suggests that the affiliative category, which is most spread out and

has highest nPVI, is the category without a regular beat.11

11 I cannot exactly replicate
the statistics in their table S4:
even the ioi statistics deviate
slightly, and the nPVI scores I
compute are all lower.

The second paper, Burchardt and Knörnschild (2020), concerns isola-

tion calls of adult sac-winged bats (Saccopteryx bilineata), as well as isola-

tion calls of Seba’s short-tailed bat (Carollia perspicillata) and click trains

of spermwhales (Physeter macrocephalus). I have plotted the rhythms in

Figure 7.8. The click trains of spermwhales are extremely isochronous,
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figure 7.9 – Rhythms in fish sounds (Burchardt et al., 2021). Shown are three types of
sounds produced by fish in the Mediterranean. The /Kwa/ sounds of the rayfinned genus
(A) and the vocalizations of the brown meagre (B) are largely isochronous, while those
of Roche’s snake blenny (C) are very irregular. That was the reason Burchardt et al. (2021)
included this species.

which is not surprising since they are used for echolocation. The calls of

Seba’s short-tailed bat are largely isochronous, although the plot suggests

some clustering around the motifs 2 : 1 : 2, 1 : 2 : 2, and 2 : 2 : 1. These calls
are about twice as fast as the calls of the sac-winged bat, which also have

an isochronous rhythm.

The third paper, Burchardt et al. (2021), analyzed the soundsmade by

several fish species from the Mediterranean: a particular reproductive

vocalization of the brown meagre (Sciaena umbra), the so-called /Kwa/

sound that is “most probably produced by species from the rayfinned

genus Scorpaena”, and vocalizations of Roche’s snake blenny Ophidion

rocheiwith long, irregular gaps. The latter indeed seems completely irreg-

ular, while the brownmeagre’s vocalizations and /Kwa/ sounds tend to be

quite isochronous. The /Kwa/ sounds also contain some very high-integer

ratio rhythms, or what Roeske et al. (2020) might call ornaments. These

occur when otherwise isochronous calls are preceded by a very short call,

as can clearly be seen in the waveforms (see Figure 1 of the original paper).

The fourth paper, Filer et al. (2021), compared vocalizations of two

Australian frog species: the wallum sedge frog (Litoria olongburensis, wsf)
and the eastern (common) sedge frog (Litoria fallax, esf). If the two species

vocalize at the same time, theyare in competition for aplace in theacoustic

space and the paper suggests that the frogs adapt the rhythm of their

vocalizations in the presence of competitors. Figure 7.10 visualizes the

rhythms for both species in the presence and absence of competitors.

7.7 Isochrony
With a small bestiary of rhythm triangles and datasets in place, we can

evaluate the measure I introduced above: the n-gram isochrony, which
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figure 7.10 – Rhythms in vocalizations of two sibling frog species (Filer et al., 2021). The
eastern sedge frog (A) and wallum sedge frog (B) are in acoustic competition and adjust the
rhythm of their vocalizations when competitors are present. This is not very clear from the
triangle plots and possibly better seen in particular duration ranges (C).

generalizes the nPVI. It measures the distance between a given motif

of length n and the completely isochronous motif of n identical inter-

vals. Higher values of n intuitively correspond to higher-order notions of

isochrony. If a rhythmic dataset has a high average isochrony for n = 2,

pairs of successive intervals are frequently identical. But for n = 6, the

dataset has to contain many sequences of six successive, almost identical

intervals: amuch stronger form of isochrony. Irrespective of n, the score is

normalized so that a value of 1 indicates perfect isochrony, while a value of

0 corresponds to the opposite, limit case where all intervals are negligibly

short except for one long interval—the corners of the triangle for n = 3

(see section c2 for details).
I have plotted the distribution of isochrony scores for motifs of length

n = 2, 3, and 6 in Figure 7.11, summarizing the entire bestiary. Below the

datasets from Roeske et al. (2020), you find data for the indri (De Gregorio

et al., 2021). The figure illustrates a point I made earlier: isochrony for

pairs of intervals (n = 2) may be common since there is a peak close to 1,

but longer isochronous sequences appear to be absent (n = 3 and n = 6).

The situation is different for the brownmeagre and the sac-winged bat

(S. bilineata), where even six successive isochronous intervals are pretty

common. But the most extreme level of isochrony, unsurprisingly, can be

found in the echolocation calls of the spermwhale.

Figure 7.11 also shows isochrony scores for themusical datasets (Roeske

et al., 2020). Western pianomusic stands out by its high isochrony scores,
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vocalizations of sperm whales. Vocalizations of Ophidion rochei are completely irregular,
resulting in a wide distribution of isochrony scores. In music, we see high levels of isochrony
in Western ‘piano’ music—or harpsichord music, really—and more rhythmic diversity in
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Data is from (1) Roeske et al. (2020), (2) De Gregorio et al. (2021), (3), Fernandez et al. (2021),
(4) Burchardt and Knörnschild (2020), (5) Burchardt et al. (2021) and (6) Filer et al. (2021).

even for n = 6. This dataset consists of recordings of ‘piano’ music by

Bach, but these are treated as single-instrument recordings, and voices

are therefore not differentiated. This means that we are effectively look-

ing at a surface rhythm of multiple voices, which is much denser (and

presumably full of sixteenth notes, as it was written for harpsichord). The

other datasets, especially jembe and salsa music, contain more varied

rhythms. All in all, the isochrony score proposed in this interlude seems

to be a useful generalization of the nPVI, capable of describing different

orders of isochrony.
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To conclude, the second half of this interlude can be read as an exercise in

musical typology, inwhichwe compare the variability of amusical feature

(types of rhythmic motifs) across datasets. To bemore precise, it was an

exercise in continuous, cross-species rhythm typology, since the feature of

interest could vary continuously, andwe studied it in different species. But

in every case, it remains an empirical question whether the feature does

vary continuously, or whether it can be divided into discrete categories. It

might, as with the indri, or it might not, as with the sedge frogs.

The question of categoricity applies not only to rhythm but to contin-

uous features generally. We can ask the same about melodic modes in

plainchant, like in chapter 5, or about shapes of melodies. Indeed, that

will be the topic of the next chapter. To give you a flavor, the core idea is

already illustrated in Figure 7.11. If we, for example, look at the isochrony

distribution (n = 2) of jembemusic, we see multiple peaks or statistical

modes. This can only happen if there are multiple clusters of motifs that

have different distances to the isochronousmotif. Multimodality, in this

case indicates categorical rhythm.12

12 The converse need not be
true: symmetrical clusters
(categoricity) that are all
equally far from the center
result in a unimodal distribu-
tion of isochrony scores. This
seems to be the case in some
music datasets (e.g., raga).

This suggests that one can look for cat-

egoricity by testing for multimodality, and that is what the next chapter

will do for melodic contour.13

13 I have already applied a
Hartigans’ dip test for mul-
timodality to the isochrony
distributions shown in Fig-
ure 7.11: those with a darker
shade are significantly mul-
timodal. But because of
footnote 12, this is not a
good test of categoricity. A
better alternative considers
the distribution of pairwise
distances instead of only the
distances to the center. The
idea is explained in detail
in the next chapter, and ap-
plying it to rhythm is left for
future work.

Let’s dip into it.

supplements c1 iemp Cuban Salsa and Son • c2 Measuring isochrony

data and code The data and code for all results in this interlude, as well as all figures, have
been made available publicly online via github.com/bacor/rhythm-triangles. The original
data from the cited papers have also been included where possible.
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Shapes of music
How can one best describe the shapes of melodic phrases in

musics from across the globe? Previous studies have often

relied on typologies with a discrete set of contour types. We

question their adequacy: we find no evidence that phrase

contours cluster into discrete types in German and Chinese

folksongs or Gregorian chant. The test for clustering we pro-

pose applies the dist-dip test of multimodality after a umap
dimensionality reduction. The test correctly identifies cluster-

ing in a synthetic dataset of contours but not in actual phrase

contours. These results argue against the use of discrete ty-

pologies. Additionally, we identify a hidden parameter in

two discrete typologies that can strongly skew the type dis-

tributions. Our findings suggest that melodic contour is best

seen as a continuous phenomenon. We end by revisiting the

melodic arch hypothesis using a continuous approach to con-

tour.

Introduction 96 • Melodic contour typology 97 • Phrase
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8.1 Introduction
Recent years have seen a renewed interest in the search for musical uni-

versals: properties common tomost or even all musics across the world

(Brown & Jordania, 2011; Mehr et al., 2019; Savage et al., 2015). Musical

universals can help to identify the constraints within whichmost music

is made, whichmay, in turn, point to biological predispositions for music

(musicality) and inform theories about its evolution (Honing, 2018). The

frequent use of isochronous beats is, for example, consistent with a bio-

logical, cognitive capacity for beat perception (Winkler et al., 2009). But

music might also be shaped by physiological constraints. A frequently

cited universal is the prevalence of arch-shaped or descendingmelodic

phrase contours, sometimes known as themelodic arch hypothesis (Brown

& Jordania, 2011; Huron, 1996; Savage et al., 2015; Savage et al., 2017). It

has been suggested that the physiology of our vocal system explains their

prevalence, making pitch contours that fall towards the end of a phrase

easier to produce (Tierney et al., 2011).

Questions of universality go hand in hand with classification: they

usually require typologies that break downmusic into a set of characters

or featureswith several possible values or types (Brown& Jordania, 2011).

Examples of features are the type of scale used or the type of rhythmic sub-

division. Both of these are discrete characters, but there are also continuous

characters, like tempowhenmeasured in beats per minute. Even though

it can vary almost continuously, melodic contour is often treated as a dis-

crete character and described as ascending, descending, arch-shaped, and so

on. Mapping the frequency of those contour types across cultures then

allows one to assess cross-cultural generalizations like “arch-shaped and

descending contours are themost frequent contour types across cultures”.

Besides synchronic questions, typologies also play a role in diachronic ques-

tions. In the words of Herzog (1937, cited in Adams, 1976), “it is through a

discovery of types that we hope to find the stylistic relationships, which

are often genetic and historical relationships between different melodies.”

The validity of all such comparative questionsdependson the validity of

the typology used. Consider, for example, a charactermodality taking the

valuesmajor,minor, and irregular based on the presence of themajor third

of the scale. While this could make sense for common practice music, it is

an awkward description of themodalities in Gregorian chant or the songs

of the Lakota (Densmore, 1918).1

1 Frances Densmore tabu-
lated the modality of the
songs she collected in pre-
cisely this way, but was well
aware that this notion of
modality was alien to the
music she was studying.

This problemwill be familiar to compar-

ative linguistics. If a typologist wants to compare the category ‘noun’ in

different languages, a descriptive linguist could insist that ‘noun’ has a

different, or even incommensurable, meaning in each of those languages

(cf. Haspelmath, 2018). But while linguistic typology has flourished de-

spite the problems inherent to comparison, ethnomusicology has largely

avoided comparison and questions of typology (Nettl, 2005, ch. 6).

In this chapter, we revisit the question of melodic contour typology:

how to describe the shapes of melodic phrases? We first review some of

the literature on contour typology. The common assumption seems to
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figure 8.1 – Three contour
typologies. (a) Densmore
(1918) divided Lakota songs
into five broad classes based
on their contour, each iden-
tified by one representative
song. Such an inductive
approach contrasts with the
deductive typologies by (b)
Adams (1976) and (c) Huron
(1996). Adams’ typology con-
siders all possible orderings
of the four boundary pitches.
A melody, for example, has
type 3412 if its initial (e.g., 3)
is above the final (2) and if
it in between first reaches a
higher (4) and then a lower
(1) pitch. Huron’s typology
considers the ordering of the
average pitch on the first,
middle, and final parts of a
melody.
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have been that “thatmelodic contour types do exist and canbe empirically

defined” (Adams, 1976, but also e.g., Savage and Brown, 2013). We ques-

tion that assumption. Contour types cannot be said to exist if contours

do not cluster accordingly. But we fail to find any evidence for clustering

in phrases from three repertoires, both within each repertoire and when

aggregating them. As a result, discrete typologies partition the contour

space somewhat arbitrarily. If the partition is not fair, one risks misrepre-

senting the variability. We show that this is precisely what two typologies

turn out to do. Although we also propose a remedy using a maximum

entropy criterion, the fact remains that melodic contour appears to be a

continuous phenomenon.

8.2 Melodic contour typology
Contour is akeyaspectofmelody. Whenstill in thewomb, humansalready

appear to be sensitive to the pitch contour of the mother tongue (Mampe

et al., 2009), and once born, contours remain a central cue for our first

steps in language learning. With such importance in early life, it is not

surprising that Dowling (1978) argued that contour and scale underpin

ourmelodicmemory. Composerswhowant towrite catchymelodiesmust

also attend to their contours. Indeed, many composition treatises discuss

how to shapemelodies. Piston (1970) for example opens his Counterpoint

with a chapter on the “melodic curve”, while Perricone (2018) reassures

us that “there are only five basic melodic shapes or contours” (p. 179):

ascending, descending, arch, inverse arch, and stationary. Such accounts

are primarily meant prescriptively, not as a cross-cultural description of

contour shapes—even though wewill see some overlap.

Adams (1976) identifies a plethora of melodic contour descriptions in

the academic literature. Some narrate how themelody progresses, others

settle forword lists, yet others for graphs. Some authors propose ten types,

others six, yet others four. Descriptions are often ambiguous—how to

distinguish a bow from an arch?—and sometimes even inconsistent. Alan
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Lomax’ cantometrics project, for example, codedmelodic shape as arched,

undulating, descending, or terraced. But where the first three apply to the

most characteristic phrase in a song, the latter applied to the entire song.

Its successor, CantoCore (Savage et al., 2012), only includes phrase-level

contour types, but six of them (horizontal, ascending, descending,U-shaped,

arched and undulating) and the annotator is given considerable freedom

to resolve ambiguities.2

2 The instructions allow cod-
ing of “clear ‘hyper-phrase’
contours” as a single contour
and advice the annotators to
ignore “temporary interval
changes that do not greatly
affect the dominant melodic
contour.”

An early andmore systematic contour analysis is Frances Densmore’s

1918 study of the music of the Lakota people (also known as the Teton

Sioux). She visualized the contours of complete songs by plotting the

accented notes (the downbeats in her transcriptions) while ignoring ac-

cidentals. This allowed her to cluster songs into five classes with similar

contours and apparently sometimes similar social functions. It is not

entirely clear howDensmore classified the songs. Sometimes the global

shape seems to be the crux (class A usually has only descending intervals),

but she also mentions characteristic local features (such as a repetition of

the lowest note in class C or the ascending opening in D). Such features

are notmutually exclusive, but they suggest the classes are based onmore

than contour alone. Densmore identified one exemplary song for each

class, making her typology entirely culture-specific.

Deductive typologies are not culture-specific since their types are de-

rived from first principles. An example of this is Adams’ rather intricate

typology (Adams, 1976). It considers all possible orderings of a melody’s

four boundary pitches: the initial note I, the final F, the first occurrence of

the lowest pitch L, and the highestH. To simplify matters, assume that

there are k distinct boundary pitches, with L = 1 the lowest andH = k the

highest, so that I and F fall in between. Now a contour type is something

like (I = 2,H = 4,L = 1,F = 3) or 2 4 1 3 in short. This means that the

initial is below the final, and themelody reaches the highest and lowest

pitch in between. There are fewer than four values whenever the final (or

initial) is also an extreme value, as in (I = 2,L = 1,H = F = 3) or 2 1 3:

starting somewhere in themiddle, descend to the lowest and end on the

highest pitch. With this representation, one can determine that there are

15 orderings, illustrated in Figure 8.1.

Although Adams’ paper is perhaps themost comprehensive study of

contour typology, it attracted few followers. The typology best known

today was proposed by David Huron and is conceptually much simpler.

The idea is to reduce amelodic contour to three pitches: the initial I, finalF,

and the average pitchM of all notes in between (themiddle). The contour

types are the nine possible orderings of these three pitches. For example,

if I < M > F, the contour type is convex, if I = M > F, it is horizontal-

descending, and so on. Huron also mentions a variant of the typology that

divides themelody into three equal parts and uses the average pitch on

the initial, middle, and final third. This should be less sensitive to the

initial and final pitch, and like other later studies (e.g., Savage et al., 2017;

Tierney et al., 2011), we will consider this variant.
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figure 8.2 – Tempo distribu-
tions of songs of the Maidu
and Nuu-chah-nulth. Shown
are histograms and kernel
density estimates (kde). The
tempos in Maidu music (a)
cluster in multiple groups,
suggesting a typology with
a slow, medium and possibly
fast type—which would not
be appropriate for music of
the Nuu-chah-nulth (b).
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Whereas Densmore’s typology is derived empirically and therefore

culture-specific, Adam’s and Huron’s typologies are derived from first

principles and culture-independent. But which typology should one use?

To address that question, we analyze the same phrase contours and ran-

dom segments as we studied in chapter 6.

8.3 Phrase contours
We use two collections of ‘German’ folksongs from Catafolk: the Erk of

1700 songs (Erk & Böhme, 1893a, 1893b, 1894) and the Böhme subset of

704 songs (Böhme, 1895). In addition, we analyze 152 folksongs fromNova

Scotia, collected by Creighton (1932), and the three Chinese subsets in

Essen: Han, Shanxi andNatmin. Finally, we include phrases fromGrego-

rian chants in three liturgical genres: antiphons, alleluias, and responsories.

All of these come from the Liber Usualis in the GregoBase Corpus, using

breathingmarks to indicate phrase boundaries (see Figure 2.3).

Just as in chapter 6, all phrases are converted to fixed-length pitch se-

quences: we interpolate the melody and then sample N = 50 pitches

equally spaced in time. Using a fixed number of pitches allows us to com-

parephrase contours irrespectiveof their length. Thismeansweeffectively

normalize the phrase duration and usually interpret the temporal axis as

the relative position in the phrase. Phrase length, nevertheless, has an

obvious effect on contour shape: themore notes, themore shapes you can

make. To study such effects, we also record phrases’ length (number of

notes) and duration (in quarter notes).

The idea that phrases may be shaped according tomultiple types raises

a question: do these typesmostly or perhaps only show upwhen amelody

is segmented in phrases or also when sliced up differently? To evaluate

this, we also extract random segments of all melodies, that are roughly as

long as phrases but unlikely to overlapwith them (see section 2.4). Finally,

we create two cross-cultural datasets by aggregating phrase contours and

random segments sampled from each of the nine datasets. In this chapter,

we primarily discuss the aggregate dataset.
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8.4 Clusterability with the dist-dip test
Returning to our central question—which typology should one use to de-

scribemelodic contour?—wewould argue that a discrete typology should

be appropriate for the data, in the sense that the types should correspond

to clusters in the data (cf. Spike, 2020). Let us illustrate this using a simpler

musical feature: tempo. Whenmeasured in beats per minute, tempo is a

continuous character. A traditionmight nevertheless use only a few dis-

tinct tempo ranges, such as a slow,medium, and fast tempo. If we plotted
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the distribution of tempos of many songs, one would expect that distribu-

tion to have three peaks ormodes. Figure 8.2a illustrates that the songs
of theMaidu roughly follow that pattern (Densmore, 1958).3

3 Tempo transcriptions from
Catafolk, see chapter 3.

A typology

with three corresponding types (slow, medium, and fast) would therefore

be appropriate for Maidumusic—but it is inappropriate for the music of

the Nuu-chah-nulth (Densmore, 1939).

Whatwehave just discussed is also knownas clusterability: the question

of whether the data show signs of clustering (Adolfsson et al., 2019). One

way to formally test this is by looking formultiple statisticalmodes: peaks

in the probability density. The Hartigans’ dip test (Hartigan & Hartigan,

1985) does precisely that for univariate data like the tempos. It compares

the null hypothesis that the data is unimodal with the alternative hypoth-

esis that there are multiple modes. The test revolves around a statistic

known as the dip: the maximal distance between the empirical cumula-

tive distribution function and its closest unimodal approximation. In the

case of theMaidu songs, the test confirms our intuition that the tempo

distribution ismultimodal (p < 0.001), while it cannot reject unimodality

for the Nuu-chah-nulth songs (p ≈ 0.08).
The Hartigans’ dip test works for univariate data but not for multi-

variate data like the standardized contours. A simple trick can, however,

reduce the multivariate problem to a univariate one. As illustrated in

Figure 8.3c, the dist-dip test (Kalogeratos & Likas, 2012) tests whether a

(multivariate) distribution is multimodal by checking whether the (uni-

variate) distribution of pairwise distances is multimodal according to

Hartigan’s dip test. After all, if a distribution is multimodal, you expect

to find at least two types of pairwise distances: small within-cluster dis-

tances and larger between-cluster distances. This means the distribution

of pairwise distances ismultimodal, preciselywhat the Hartigans’ dip test

can evaluate.

A systematic comparison of clusterability methods recommends the

dist-dip test for a wide range of scenarios (Adolfsson et al., 2019). To

further ascertain whether this test can reliably detect clusters in contour

data, we first evaluate it on a synthetic dataset in which we enforce a

cluster structure (see Figure 8.3a and b). The synthetic contours differ
from those in chapter 6, as they are generated by aMarkov process (see

Figure 8.3a). We sample the contour’s length and initial pitch from a Pois-

son and binomial distribution respectively, and then walk through pitch

space according to the transition probabilities observed in the actual data.

We normalize the duration, center the contour, and sample 50 equally

spaced pitches to obtain a pitch sequence as before.

Generating many synthetic contours in this way results in a uniform

dataset in the sense that it does not exhibit any clustering structure. By

appropriately subsampling, one can create a clustered dataset from the

uniform one. To find good cluster centers, we fit k-means, with k = 5,

to a dataset of 25,000 synthetic contours and then select the 1000 con-

tours nearest to the centroids found by k-means. To ensure the clusters

correspond to shapes and not, say, pitch height, we used a cosine contour
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representation (see chapter 6) while selecting neighbors. This resulted in

a uniform dataset without clusters and a clustered one with five equally

sized clusters. We then computed the dist-dip test on 30k pairwise dis-

tances sampled from both datasets4

4 We used the Python
package diptest, which is
a port of the R package by
Martin Maechler.

and it utterly failed to reject the null

hypothesis for the clustered dataset (p ≈ 1).

The distribution of distances indeed looks unimodal (Figure 8.3d), even
though the dataset is designed to contain clusters. And as shown in Fig-

ure 8.3e, those clusters are clearly visible in a low-dimensional projection

made using umap (McInnes et al., 2018). This nonlinear dimensionality

reduction technique learns a low-dimensional manifold that aims to pre-

serve the global structure of the original data. This leads us to propose

another test of multimodality: the umap-dip test: the dist-dip test but now
applied to the distances on a lower, ten-dimensional manifold learned

by umap.5

5 Note that instead of a two-
dimensional manifold, we
give umap more freedom
and measure distances in
a 10-dimensional manifold.
This is one of the reasons for
using umap instead of t-sne:
the latter does not scale
well to higher-dimensional
projections.

The umap-dip test correctly rejects the null hypothesis for the
clustered dataset but not for the uniform one (Figure 8.3d). It appears
that the umap distances better capture the cluster structure of synthetic
contours than Euclidean distance does.

Onemay wonder whether testing the projected data for multimodality

is valid since the result now heavily depends on the projection. This is

comparable to how principal component analysis is sometimes used be-

fore statistical testing in other clusterability approaches (Adolfsson et al.,

2019). Alternatively, one can think of umap-dip as a formal test that can

replace the visual inspection of low-dimensional visualizations for signs

of clustering. But still, dimensionality reduction techniques like umap can
sometimes suggest clusters that are not present in the data. This behavior

wouldmake the multimodality test overly sensitive. Importantly, how-

ever, this would strengthen a negative result: if umap-dip does not find
evidence for multimodality, it probably isn’t there.

8.5 Phrase contours do not cluster
Returning to the actual phrase contours, Figure 8.4 shows the distribution

of pairwise distances for phrase contours and random segments and the

two synthetic datasets. The color coding highlights that the dist-dip test

only rejects unimodality for the clustered, synthetic dataset. In other

words: contours do not appear to cluster.

To rule out that this is an artifact of the representation, we evaluated

eight different ones (see supplement d1 for an overview of the experimen-

tal setup). Besides the raw pitch contour, we transposed the contours to

make their shapes comparable irrespective of absolute pitch: we center

contours to havemean 0 (cf. Savage et al., 2017), or transposed them so

that the tonic (cf. Tierney et al., 2011) or final note of the phrase is 0. Next,

in the normalized version of a contour, the minimum pitch is 0, and the

maximum pitch is 1 (cf. Adams, 1976). Then we add two relative represen-

tations. The first measures the intervals between consecutive pitches, and

the second only does this after smoothing the pitch contour. Finally, we
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figure 8.4 – Melodic phrase contours do not cluster. Shown are the distributions of
pairwise distances between contours in various conditions. If contours cluster, we expect
multimodal distance distributions. We test this using the Hartigans’ dip test and let colors
indicate p-values, such that grey distributions are not significantly multimodal (𝛼 = 0.05).
Eight different representations (vertically) and two metrics (horizontally) are analyzed:
Euclidean distance and the distance in a lower-dimensional umap embedding. The latter
successfully discriminates unclustered from clustered synthetic data (c vs. d; see also
Figure 8.3). However, neither in phrases (a) nor in random segments from actual melodies
(b), the test fails to find clear evidence for clustering.

compute the cosine contour, which describes the shape of a contour as a

combination of cosine functions (chapter 6). To rule out that our distance

metrics prevented us from finding clusters, we also used dynamic time

warping (dtw) dissimilarity besides Euclidean and umap distance. Intu-
itively, if two sequences are identical except that they have warped time

differently—speed up here, slow down there—their dtw dissimilarity is

zero.

With none of the eight representations, we find evidence for the clus-

tering of phrase contours or random segments using any of three sim-

ilarity metrics: Euclidean, dtw, and umap distance.6

6 The only possible exception
is the interval representation,
but that also suggests that
the uniform, synthetic con-
tours are clustered, which
they are not.

The same applies

when we only consider unique contours, reduce the dimensionality of

the contours from 50 to 10, or analyze individual datasets separately (see

supplement d2).
One may expect the length of contours to have an effect: there are

simply fewer possible shapes when you have only four notes instead of

ten, and so you should see more clusters amongst shorter phrases. If

we split out our analysis by length, the umap-dip test indeed indicates

multiple modes for the smaller phrases up to 5 notes, and sometimes also

for the longest ones of around 15 notes or more. But for most contours,

with average lengthsbetween5 and 15,we still findno convincing evidence

for clustering of phrase contours. In contrast, we do find such evidence

for the synthetically clustered dataset (see supplement d3).
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8.6 Rescuing discrete typologies
If contours do not cluster, it is hard to see how Adams’ assumption that

“contour types do exist and can be empirically defined” can be right. One

is indeed free to define types, but these definitions will be somewhat arbi-

trary: the contours suggest no obvious partition. Can discrete typologies

then still play a role in comparative questions? Only if they partition con-

tours fairly and do not skew the type frequencies—preciselywhat Huron’s

and Adams’ typologies appear to do.

fixing huron’s and adams’ typology Recall that Huron’s typology—the

sameargument applies toAdams’—compared theaveragepitchover three

segments of a melody. These averages are usually not exactly identical,

and so two pitches are treated as equivalent if their absolute difference

is below a tolerance parameter 𝜖. With zero tolerance, 𝜖 = 0 semitones,

horizontal contours will be extremely unlikely, but with a tolerance of an

octave, 𝜖 = 12 semitones, virtually any contourwill be considered horizon-

tal. In short, the choice of 𝜖 influences how evenly contours are divided

over the classes. If not appropriately chosen, the tolerance parameter will

strongly distort the type distribution, exaggerating the frequency of some

types at the cost of others (see Figure 8.5).
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And so, what is a good choice of 𝜖? Tierney et al. (2011) use 𝜖 = 0.2
semitones without motivation, and Huron does not report a choice of 𝜖.
We propose amore principled alternative: to choose 𝜖 so that the classes
are as small as possible. Firstly, in the absence of clusters, dividing the

space as equally as possible seems the best one can do. Secondly, this

would ensure our typology contains no redundant, largely empty classes.

And thirdly, this effectively imposes a strong prior against frequency dif-

ferences between types. If we nevertheless find frequency differences

across traditions, this strengthens the result. One can measure a type

distribution’s evenness with its entropy. A completely deterministic dis-

tribution has zero entropy, while a flat or uniform distribution has the

highest possible entropy.

Concretely, we propose to choose 𝜖 so that it maximizes the entropy

of the type distribution. Which 𝜖 yields maximum entropy depends on

the dataset, and changing 𝜖will change the typology. This means that the

typology will be slightly different for different datasets. One way around

this is to estimate a value of 𝜖 on a cross-cultural dataset and then use the

resulting typology on each of the individual traditions. Applying this to

the aggregated phrase contour datasets, we find that 𝜖 = 1.4 semitones

maximizes the entropy (Figure 8.5b). We discuss the implications for the

melodic arch hypothesis in the next section.

learning the types But evenwith amaximumentropy criterion, it is con-

ceivable that the types do not divide the space fairly. If one nevertheless

prefers to use a discrete typology, one can take inspiration from Dens-

more’s inductive typology and learn the types. While her typology was

specific to Lakota songs, themethod is quite general: identify a number of

representative contours and let those represent the types of a typology.

A computational analog could be a k-means typology, where one clusters

the contours into k types by assigning them to the class of the nearest

cluster centers. These centers are iteratively updated to minimize the

within-cluster variance and come to represent the types in the typology,

similar to Densmore’s use of exemplars. This results in types that more

accurately reflect the contours they represent than types in deductive

typologies like Huron’s or Adams’. All contours, for example, start and end

flat because themelody is stable during the first and final note, which is

reflected in the types (see supplementd4). This approach can be extended
by usingmore sophisticated clusteringmethods and representations.

8.7 Embracing continuous typology
An inductive or learned typology effectively starts from the perspective

thatmelodic contour is a continuous phenomenon—precisely in linewith

our findings. This is not the end of contour typology, but it does ask for a

different approach: one that does not use distinct types but embraces the

continuous nature of contour.
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figure 8.6 – Average phrase contours differ across three traditions. The average phrase
contours of German folksongs, Gregorian chant, and Chinese folksongs compared to
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overall tendency for arch- or descending average contours but show interesting differences:
the Chinese average is not arch-shaped and, strictly speaking, a counter-example to the
average hypothesis. This illustrates how a continuous approach to contour typology.

Inspiration, again, comes fromDavidHuron. Huron (1996)proposedhis

typology as a tool to investigate the melodic arch hypothesis. His analysis

of over 6000 songs from the Essen folksong collection found that themost

frequent phrase contour types were convex and descending contours. But

Huron also computed average phrase contours by taking all phrases with

a certain number of notes and averaging the pitches at every time step.

When plotted, the average contours revealed clear arch shapes. Notably,

this analysis treats melodic contour as a continuous character.

We replicate this result in Figure 8.6 for phrases from three traditions.

That figure also shows the average shapes of the random segments in grey,

which are almost entirely flat (cf. chapter 2).7

7 As noted before, this im-
plies that the (somewhat
tradition-specific) average
phrase shape results from
the particular placement
of the phrase boundaries.
This sanity check confirms
that phrases are structurally
relevant units and that the
phrase annotations in Essen
make sense (like the breath-
ing marks in chant): had
they been random, their
average should have been
flat.

While the chant phrases

tend to be arch-like, the average phrase contour of Chinese folksongs

looks quite different: not only is the rangemuch larger, its shape is best

described as descending, or perhaps horizontal–descending. We also

observed this in chapter 6, but earlier studies (such as Savage et al., 2017;

Tierney et al., 2011) seem to have overlooked this. One can, however, also

see this using a discrete typology. Figure 8.5e and f show that descending

contours aremore common than convex ones in Chinese folksongs, while

they are less common in German folksongs.

Strictly speaking, all this argues against two possible formulations of

themelodic archhypothesis: (1) thatHuron’s convex type ismost frequent,

and (2) that the average contour is arch-shaped. This underscores the

need for precisely formulated, testable hypotheses. In fact, chapter 6

proposed one. If c1 and c2 are the first two coefficients of a cosine contour

representation, c1 measures its descendingness and −c2 its archedness,
and so we proposed the following:

hypothesis: c1 and−c2 tend to be larger formelodic phrases

than for randommelodic segments.

This hypothesis was confirmed in German and Chinese folksongs.
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8.8 Conclusions
In this chapter, we revisited the description of melodic contours. Analyz-

ing phrase contours from three musical traditions, we found no evidence

that the contours form clusters, which contradicts the assumption that

contour types exist. We then showed that two discrete typologies, by

Huron and Adams, contain a hidden parameter that can lead the typology

to favor certain types over others. Although we proposed a remedy using

a maximum-entropy criterion, we argue for a continuous approach to

contour typology. This directly shows cultural differences and leads to a

precise, testable reformulation of the melodic arch hypothesis.

A shortcoming of this work is the limited cross-cultural validity of the

data analyzed. Except for Savage et al. (2017), most previous studies have

relied on the Essen Folksong Collection, and this study only added Gre-

gorian chant as a third tradition. However, our central finding—that

contour shapes do not cluster—is negative. For that, cross-cultural valid-

ity is not as much of an issue: even the limited data we analyzed serves as

a counter-example. The same is true when rejecting two formulations of

themelodic arch hypothesis. But we think that themethods we proposed,

and the continuousmethodology we argued for, are sufficiently general

to be applicable in other traditions—or even different domains.

Phrase contours, after all, are not only studied in music but also in

language. The study of intonation in phonology has produced various

cross-cultural generalizations, such as the decline from the beginning

towards the end of a phrase, or the start of a phrase by a sharp rise known

as the reset (Ladd, 2001). At the same time, models have been proposed to

describe the intonation contours found in particular languages, such as

the ToBI system in English (Silverman et al., 1992). This revolves around a

grammar for combinations of high and low tones andgives rise to a similar

set of questions addressed in the present paper. One recent study, for

example, used functional data analysis (fda) to analyze the pitch contours
of falling and rising intonation types in English.8

8 This seems comparable to
using a cosine contour rep-
resentation, assuming that
cosines indeed approximate
the principal components,
as is the case for melodic
contours.

Although the authors

do not explicitly test for this, as we do here, the results suggest that these

contours form clusters (Zellers et al., 2010). Analogous to this paper, the

authors move from a discrete analysis (ToBI) of intonation contours to a

continuous one (fda). A more recent study Gerazov andWagner (2021)

uses t-sne to visualize intonation contours, and an obvious next step

would be to apply the clusterability methods developed in this paper

to verify whether those contours indeed cluster. More generally, this

convergence calls for an interdisciplinary study of contour in speech and

song.
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data and code Data and code have released via github.com/bacor/shapes-of-music
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meeting in 2021: Cornelissen, B., Zuidema, W., & Burgoyne, J. A. (2021a). Fixing Huron’s
typology (poster). Locomus Meeting 2021. http://locomus.net/locomus21/abstracts/.

author contributions bc designed the research, implemented the experiments, and
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Melody squares

M
elodic contour is a superficial phenomenonandde-

liberately so. It abstracts away from individual pitches

to describe only the general movement of a melody.

In this interlude, I would again like to zoom in on the

pitches that underlie a contour using the same lens

as in chapter 7. There we broke down rhythms into smaller motifs and

visualized these in a rhythm triangle. Nowwe ask if we can use the same

approach to visualize themelodicmotifs that are present in a given corpus

of melodies.

9.1 Plotting a plot
Rhythmic motifs of four onsets can be plotted in a triangular space only

when the total duration of the motif has been normalized, and the last

interval is completely determined by the first two intervals. But it is not

clear how such a construction would extend tomelodies. Whereas time

only moves forward, pitchmoves both up and down, and so there is no

obvious equivalent of the duration of a motif. One could try to normalize

motifs using the pitch interval between the first and final note, or perhaps

between the highest and lowest one, but both seem rather unnatural.

Instead, we will consider smaller motifs of three pitches. These form only

two pitch intervals and can be visualized naturally in a phase plot that

shows the first interval horizontally and the next interval vertically.

To visualize a melody in a phase plot, we break it down into a sequence

of overlapping motifs and plot each motif in phase space. Figure 9.1 il-

lustrates this for the opening phrase of Ay mi! dame de valour, a so-called

virelai by the French composer Guillaume deMachaut (c. 1300–1377). The

song opens with an outcry—Ay mi!—whose sharp drop of a major sixth

makes for a rather unusual motif. Most motifs later in the melody indeed

lie closer to the center of the space. Somemotifs even occurmultiple times,



figure 9.1 – Phase plot
of a melody. A melody
(a) is broken down into
overlapping motifs of three
pitches or two intervals (b).
The phase plot (c) shows
the first interval in a motif
horizontally against the
second interval vertically.
The trajectory formed by all
motifs (numbered) is shown
in the phase plot. Note that
motifs 13 and 14 are the same
as 4 and 5.
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like motifs 13 and 14, whose intervals are identical to motifs 4 and 5. And

that is precisely what I want to look at in this interlude: which parts of

the phase space are most frequently visited by a collection of melodies?

How frequent are different motifs in a given corpus?

But first, it will be helpful to take a closer look at the space and how it

is structured. Figure 9.2 shows that each quadrant contains motifs with a

particular contour: moving clockwise from the top left, one finds concave,

ascending, convex, and descendingmotifs. Motifs on the vertical axis start

with a repetition, while those on the horizontal axis end with one. Next,

the interval between the first and final pitch—Iwill call this the span of

amotif—is identical in all motifs that fall on one diagonal line running

from the top left to the bottom right. For example, the motif (4,−2) =
(+M3,−M2) that moves up amajor third and then down amajor second

falls on the same diagonal as themotif (−3, 5) = (−m3,+P4), and both
span amajor second.1

1 I use intervals and their sizes
(in semitones) interchange-
ably:

Sym. Name Size
m2 minor second 1
M2 major second 2
m3 minor third 3
M3 major third 4
P4 perfect fourth 5
TT tritone 6
P5 perfect fifth 7

I will call the main diagonal from the bottom left to

the top right the antidiagonal.

Visualizingmotif frequencies in this space using a scatter plot, as Fig-

ure 9.1 perhaps suggests, is not an option. I will be looking at musical

scores in which the set of possible intervals is discrete, and somost points

will overlap. One could jitter the points: add some Gaussian noise so that

the points form small blobs. Sometimes the sizes of these blobs are clear

at first sight but scatter plots often suffer one of two problems—certainly,

the triangles in chapter 7 did. Either you plot toomany points on top of

one another (overplotting), or youmake the points too small to be visible

at all (underplotting). Both problems prevent you from seeing the density

of the data accurately. Fortunately, visualizing the density is easy in this

case: we color each grid cell to show how frequent the corresponding

motif is.

The color coding does require some attention. Highly frequent motifs

will be colored somuch darker than the rest that it becomes hard to see

differences between infrequent motifs. It might make sense to discard

the most frequent items, but a more principled solution scales the colors

in a logarithmic fashion. Now one however faces the opposite problem:
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figure 9.2 – A guide to the melody phase plot. (a) Each quadrant contains motifs with a
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the same pitch (examples A–F). The antidiagonal (c) contains motifs that take two identical
steps (examples 1–6). Finally, motifs on a diagonal (dashed red lines) have the same span:
the interval between the first and final note.

low-frequency items can start to dominate the visualization. One unique

motif among, say, 106 motifs stretches the color scale to 10−6 if it has to

describe all motif frequencies. As I am interested in the more common

motifs, I will cut off the color scale at 0.001: less frequent motifs will all

get the same color, while those that are completely absent from the data

are masked to remain white. This cut-off point depends on the part of

the space that is actually shown: a little more than a perfect fifth up and

down in this case.

To summarize, the idea is to visualize the frequencies of three-note

melodicmotifs in a two-dimensional phase space that Iwill call themelody

square. Inmore technical terms, it simply plots the bigram log-frequencies

of pitch intervals. And precisely because of its simplicity, I expect amelody

square to be insightful.

9.2 Commonalities and rarities
I producedmelody squares for 22 corpora which I had readily available

in Catafolk (see chapter 3): Chinese folksongs from the Essen Folksong

Collection (Schaffrath, 1995), from which I also took three corpora of

German folksongs2

2 Böhme, 1877, 1895; Erk and
Böhme, 1893a, 1893b, 1894.

. Then I included nine Native American corpora3

3 Densmore, 1913, 1918, 1922,
1929b, 1932, 1939, 1943, 1957,
1958.

from

the Densmore collection (Shanahan & Shanahan, 2014), songs fromNova

Scotia,4

4 Creighton, 1932.

and some corpora encoded by Damien Sagrillo with songs from

Ireland,5

5 O’Boyle, 1976; O’Sullivan,
1981.

Scotland,6

6 Haydn, 1792.

Germany,7

7 Pinck, 1926, 1928, 1933, 1939.

and Luxembourg. Finally, I included a

corpus of 31 Tsimané songs, recorded by Jürgen Riester (1978). Before we

show all melody squares individually, let’s look at some averages.
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figure 9.3 – Melody squares reveal common and rare melodic motifs in corpora from three
geographical areas. The plots in (a) show the log-frequency of two-interval motifs in (1) all
corpora combined, (2) European, (3) North American, and (4) Chinese corpora only. This
reveals several common patterns (b), which are discussed in the main text. It also reveals
which motifs are rare (black dots). Panel (c) orders these by their span to show that the
corpora avoid spanning intervals in particular ways. The second of these plots for example
shows that motifs spanning a major second (M2) up or down rarely consist of two successive
minor seconds (m2). Tritones (TT), finally, appear to be avoided altogether.

Figure 9.3 shows a global melody square based on all corpora next to

melody squares for the European, North American, and Chinese corpora

separately. I will sketch some common tendencies and rarities in these

melody squares. These observations should not be read as established

empirical claims but as hypotheses yet to be rigorously tested. The first

thing to notice is that wemostly see small steps: the most frequent motifs
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all lie in the center of the square. This is indeed a commonly citeduniversal

tendency (e.g., Brown & Jordania, 2011; Savage et al., 2015) Second, we see

that repetitions tend to be common, as motifs on both axes often have a

relatively high frequency. Third, so are what onemight call alternations:

motifs on themain diagonal that jump to another pitch and thenmove

back to the first pitch.

Fourth, the squares appear to be mirrored in the main diagonal, which

means that the motif (x, y) tends to be as frequent as (−y,−x). Musically,

this means that motifs are reversible: For a motif (5,−2) that goes up a
fourth and then down a minor second, there is an equally frequent re-

verse motif (2,−5) that goes up aminor second and then down a fourth.

Fifth, squares also appear to be mirrored in the antidiagonal: (x, y) and
(y, x) are roughly equally frequent. For example, the motif (5,−2) spans
aminor third via a fourth up and a whole tone down, and the symmetry

suggests that there will be equally manymotifs spanning aminor third

by first moving down a major second: (−2, 5). In that sense, motifs are

exchangeable. These two are curious, and not always perfect: in the North

American square, the top right quadrant does for example not mirror the

bottom left one in the main diagonal, thus violating reversibility. But the

pattern seems apparent enough to deserve further study. All the more, if

one considers that some other symmetries are clearly absent: sixth, the

squares are asymmetrical in the horizontal or vertical axis.

Seventh, many motifs are commonly absent, which means that the

squares are not convex. I have organized the rare motifs by their span in

Figure 9.3c to highlight that these corpora systematically avoid spanning

particular intervals in certain ways. You for example rarely find motifs

spanning aminor second, either up or down, with amajor second. Simi-

larly, major seconds are usually not spanned by twominor seconds: the

use of successive semitones, in short, is rare. In the same spirit, minor

thirds are not often spanned using major thirds, nor do these corpora

approachmajor thirds via minor thirds or fourths. The last observation,

however, does not hold for the European square where the motif (5,−1) is
in fact quite common. Motifs that either include or span a tritone, finally,

appear to be avoided altogether.

9.3 A tree of squares
Besides commonalities, Figure 9.3 also reveals differences between the

corpora. The North American square has an upper quadrant which is

relatively empty compared to the other squares. In a previous chapter, we

observed that songs of the Lakota on average have a strongly descending

contour (see Figure 6.4), and indeed the infrequent quadrant contains

precisely the motifs with an ascending contour. The European square

stands out from the others by its more frequent use of minor seconds,

even in motifs with a larger span, while the Chinese square largely avoids

minor seconds. These observations suggest that differences in musical
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style are reflected inmelody squares. And so one wonders: can you turn

this around and usemelody squares to measure style similarity?

To find out, I looked at slightly larger melody squares ranging from

−12 to 12 semitones along both axes,8

8 Using two octaves on both
sides did not change the
results.

andmeasured pairwise distances

between all those squares.9

9 I measured the distance
between squaresA andB by

√∑
i,j |aij − bij|2.

Next, I applied hierarchical clustering to the

obtained distance matrix, where I measured the distance between two

clusters as the distance between their furthestmembers. This grouped the

22 corpora in a tree, shown in the corner of Figure 9.4. The tree has three

main branches that largely correspond to the European, North American,

and Chinese corpora. The squares in Figure 9.4 were manually organized

to reflect this clustering structure. The three groups are outlined in dif-

ferent colors, and squares that are neighbors in the tree are connected by

black lines.

If we interpret the three branches as broad areas of origin and allow the

songs fromNova Scotia to be groupedwith the European corpora, only the

Tsimané corpus is clearly misclassified. It is however quite distant from

the other corpora in its branch, as can be seen from the branch length.

Within the European group, German corpora cluster closely together, as

do songs from Ireland, Scotland, and, to a lesser extent, Nova Scotia. In

the Native American group, the Ute appear close to the Pueblo peoples,

with which they have indeed been in cultural contact, The Lakota and

Ojibwe are similarly from geographically close areas. But the tree suggests

that the Pawnee and Nuu-chah-nulth are also quite similar melodically,

even though the former have lived around Nebraska, while the latter live

on Vancouver Island.

9.4 Conclusions
In this interlude, I looked for a melodic equivalent of the rhythm trian-

gle and proposed the melody square. It shows the relative frequency of

melodic motifs of three pitches in a two-dimensional phase plot. The

squares showwhichmotifs are common and rare across multiple corpora

and revealed some interesting generalizations. But what explains the pat-

terns we observed, for example in Figure 9.3? This will be left for future

research, but perhaps an explanation can be found in the scales that are

used. For example, if European songsoftenuse scaleswith a semitone step,

while Chinese corpora prefer pentatonic scales without minor seconds,

that could explain whymotifs with aminor second are more frequent in

the Europeanmelody squares.

Where I looked at actually recorded rhythms in chapter 7, this interlude

only analyzedmusical scores. Thiswas a pragmatic choice: Catafolkmade

all these different corpora readily available tome. But it should be possible

to extend this approach to continuous pitch recordings. One could, for

example, average the pitch estimate of each individual note in a recording

and visualize the intervals between them as a scatter plot in phase space.

This would require both reliable pitch estimates and accurate annota-
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figure 9.5 – Melody squares
for Arvo Pärt’s Summa.
Works by Pärt are often
constructed according to
numerical procedures or in-
spired by geometric shapes.
Some of the constructions
underlying Summa appear to
be reflected in the melody
squares of the four voices
a–d. Unraveling the regulari-
ties in Summa is the topic of
chapter 10. Note that these
squares were produced while
ignoring all ornamental
notes.
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tions of note onsets and offsets. Such datasets are indeed available. The

Erkomaishvili Dataset, to name just one interesting example, contains tran-

scriptions, pitch contours, and note annotations of polyphonic Georgian

vocal music (Rosenzweig et al., 2020).

If continuousmelody squares prove fruitful, one could evenmove on

to visualize animal sounds in a similar fashion: complement the zoo or

rhythm triangles with a zoo of melody squares. A visual compendium

showing how different musics, or even animal sounds, from around the

globe organize their melodic movements. And then onemight find one

type ofmusic to stand out: themusic of Arvo Pärt. The strange symmetries

in the melody squares of his piece Summa (Figure 9.5) are the product

of strict regularities hidden beneath the surface of his music. What is

going on here—how does Pärt’s music work? Time tomove on to the next

chapter.
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data and code The data and code for all results in this interlude, together with all figures,
have been made available publicly online via github.com/bacor/melody-squares. My digital
transcriptions of the Tsimané songs have not been made available for copyright reasons.

reference The work in this chapter has not been published or presented elsewhere.

author contributions bc designed and conducted the research and wrote this chapter.
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comments on the first version of this chapter and Henkjan Honing for making me realize
that version needed two more figures.
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Algo Pärt
Arvo Pärt is one of themost popular contemporary composers,

known for his highly original tintinnabuli style. Works in this

style are typically composed according to precise procedures

and have even been described as algorithmic compositions.

To understand how algorithmic Pärt’s music exactly is, this

paper presents an analysis by synthesis: it proposes an algo-

rithmthat almost completely reconstructs the scoreofSumma,

his “most strictly constructed andmost encrypted work,” ac-

cording to Pärt himself in 1994. The piece is analyzed and

then formalized using so-called tintinnabuli processes. An

implementation of the resulting algorithm generates a musi-

cal score matching Summa in over 93% of the notes. Due to

interdependencies between the voices, only half of the mis-

takes (3,5%) need to be corrected to reproduce the original

score faithfully. This study shows that Summa is a largely al-

gorithmic composition and offers new perspectives on the

music of Arvo Pärt.

Introduction 124 • Tintinnabuli 125 • Analysis 128

• Synthesis 131 • Evaluation 135 • Discussion and

conclusion 136



10.1 Introduction

Notes can be found at the
end of this chapter.

Music and algorithms share a long history, but rarely has their marriage

been as fruitful as it has been in the hands of the Estonian composer Arvo

Pärt. According to one study, Pärt was themost frequently performed con-

temporary composer from 2011 until 2019.1 Not only is his music popular,

but it is also highly original. In the 1970s, Pärt developed a unique compo-

sitional technique, known as tintinnabuli, that is deeply algorithmical due

to its use of numerical procedures. The main melody may, for example,

walk down a scale, moving one step further with every measure. Alterna-

tively, it may be determined by the text: in hisMissa Sillabica, the number

of syllables in a word determines the melody for that word. Examples

such as these raise the question how algorithmic Pärt’s music precisely

is. Can all notes in a score be explained by formal procedures? And when

does the composer deviate from those, if at all?

To address such questions, I propose a type of computational music

analysis (cf. Anagnostopoulou&Buteau, 2010) that one could call analysis

by synthesis. Motivated by the idea that one cannot understand what one

cannot create, the aim is to implement an algorithm that reconstructs as

much of a score as possible. Bymeasuring the reconstruction error, the num-

ber of errors in the reconstructed score, one can evaluate the algorithm. In

practice, such an analysis is an iterative process in which one successively

refines the rules to further reduce the reconstruction error. As the error

decreases, the explanatory power of the algorithm increases, until adding

new rules no longer seems to be theoretically productive. Adding a rule

that explains only a single note, for example, is not very productive and

similar to “overfitting” amathematical model. But up to that point, the

algorithm provides an answer to a central question of musical analysis:

how does the piece work?

The idea of using algorithms to analyze Pärt’smusic is not new.2 Shvets

(2014) describes multiple constructions commonly found in the work

of Pärt using concepts borrowed from programming languages, such as

loops. Shvets and De Paiva Santana (2014) then went on to implement

several models of Pärt’s compositions. In a more formal analysis, Roeder

(2011) proposes to understand Pärt’s compositional procedures as musi-

cal transformations (cf. Lewin, 1987). His analysis effectively results in

several (functional) programs that model certain aspects of Pärt’s music.

This paper takes these ideas one step further by first formalizing a piece,

then implementing an algorithm to reconstruct the full score, and finally

quantitatively evaluating that against the original: a complete analysis by

synthesis.

Our case study looks at Summa. This piecewaswritten in 1977, one year

after Pärt wrote his first piece in tintinnabuli style (Für Alina). Summa is

best known as a composition for mixed choir or solo voices but was origi-

nally written for two voices (tenor and bass) and six instruments (Hillier,

1997). It has since been adapted for many instrumental combinations,

from string quartet to trombone quartet. The composition is intricately
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figure 10.1 – Excerpt of Für Alina (mm. 2–7). This piano piece was Arvo Pärt’s first work in
his tintinnabuli style. The right hand plays a melodic voice (m-voice) that mostly moves
stepwise, and which is freely composed. The left hand has the tintinnabuli voice (t-voice),
which is restricted to notes from the B-minor triad. The relation between the two voices
is shown on the right: the t-voice plays the highest triad note below the m-voice, but one
octave lower.

structured, but many of the underlying regularities will escape notice

when listening to a performance, or evenwhen studying the score. Indeed,

some of the procedures identified in this paper seem to have escaped pre-

vious analyses of Summa (Hillier, 1997; de laMotte-Haber, 1996; Patrick,

2011). Arvo Pärt may have anticipated this when he wrote:

I have developed a highly formal compositional system in

which I have been writing my music for 20 years. In this

series, Summa is the most strictly constructed and most

encrypted work. The encryptions are found inmany layers

of the score.3 (Pärt, 1996)

I read this as an invitation todecrypt Summa. But first, letme introduce the

tintinnabuli style and the terminology that Hillier (1989, 1997) developed

to describe it–some of which Pärt himself has adopted.

10.2 Tintinnabuli
At the heart of the tintinnabuli style lie two voices: a melodic voice or

m-voice and an accompanying tintinnabuli voice or t-voice. Them-voice
is usually diatonic and tends to move in steps around a pitch center. It is

sometimes freely composed, but more often constructed according to nu-

merical procedures. The accompanying t-voice is evenmore constrained.

It can only use notes from a central tintinnabuli triad, and is determined

by its m-voice according to a strict procedure, such as always using the

first note in the triad above the m-voice. The resulting texture is often
homophonic, further emphasizing the unity of the two voices.

For Pärt, them- and t-voice are indeedmuchmore than a compositional

technique. Them-voice “signifies the subjective world, the daily egoistic

life of sin and suffering; the t-voice, meanwhile, is the objective realm
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figure 10.2 – Tintinnabuli positions for an A minor triad. Solid notes show the A minor
scale as a melodic voice, and open notes show tintinnabuli voices in the five different
positions introduced by Hillier (1997). His terminology is shown above the staff, the
numbering used in section 10.4 below it.

of forgiveness” (Hillier, 1997, p. 96). Their duality is only appearance:

they really are a “twofold single entity,” as has been summarized in the

equation 1+ 1 = 1.

To clarify the terminology, let’s consider two famous examples (see

e.g., Hillier, 1997 formore extensive analyses). Figure 10.1 shows an excerpt

of the piano piece Für Alina (1976). The piece is composed around the

B minor tintinabulli triad, and the tonal center of B is reinforced by a

low pedal note not shown in this excerpt. The right hand plays the m-
voice, and the left hand plays the t-voice in the same rhythm, using only

notes from the tintinnabuli triad. The relation between the two voices

is simple: the left hand plays the highest triad note below the melody,

but one octave lower. Pärt deviates from this only once, when the t-voice
plays a C\ (in bar 11; not shown). This special event is marked with a

flower in the original score. In other pieces, the t-voice consistently picks
the second triad note above themelody or alternates the one above and

below it. Hillier (1997) called such configurations tintinnabuli positions. As

illustrated in Figure 10.2, he distinguishes two superior and two inferior

positions, which use triad notes above and below them-voice respectively.
Tintinnabuli positions do not change when transposing them octaves up

or down, and Für Alina therefore uses a t-voice in first position inferior.

The melody of Für Alina seems to be more freely composed than the

melodies inmanyof his otherworks. Still, it follows anumerical regularity:

every measure adds another quarter note until the pattern flips midway

andmeasures become shorter and shorter again. We find an evenmore

systematic melody in Fratres (1977).4 The piece is built around an Aminor

tintinnabuli triad and has two m-voices moving in parallel tenths. It is

unusually dissonant, as the melodies move along a D harmonic minor

scale, which includes a C\ instead of the C^ from the triad. Figure 10.3

illustrates the backbone of Fratres: nine variations on a six-measure theme,

with each variation lowering the pitch center by another third. In the first

half of the theme, themelodymoves down from the pitch center, and then

approaches it from above, moving one step further every bar. The second

half of the theme repeats the first half retrogradely. This results in four

types ofmelodicmovement thatHillier (1997) also frequently encountered

in other works of Pärt. Figure 10.4 summarizes these four melodicmodes:
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figure 10.3 – The melodic structure of Fratres is a series of variations of a six-bar theme.
The first two variations are shown. The theme leaves and then approaches a pitch center,
moving one step further for three consecutive bars. The next three bars repeat the first
three, but are played backward. This results in four types of melodic movement, or modes,
that are often used by Pärt to compose m-voices. The first staff also shows the parallel
m-voice and the t-voice as small notes.

  
 

   


  
   

 

4th mode3rd mode2nd mode1st mode

figure 10.4 – Four melodic modes commonly used by Arvo Pärt to construct m-voices. Two
modes move away from a central pitch, and two approach it (Hillier, 1997). All of these are
found in Fratres, as shown in Figure 10.3.

moving (1) up or (2) down from a central pitch, or moving (3) down or (4)

up towards it.

The context in which Arvo Pärt developed his tintinnabuli style, and

its broader interpretation, has been discussed extensively in the scholarly

literature (see e.g., Bouteneff et al., 2021; Hillier, 1989; Shenton, 2012). It

emerged during a period of seven years in which he studied early music,

from plainchant to Palestrina, after his earlier serialist style had come

to a creative halt. Musically, as Hillier (1997) also explains, tintinnabuli

contains elements from early polyphony, functional harmony, and seri-

alism. The stepwise motion in them-voice is for example reminiscent of

plainchant, and the homophonic texture it forms with the t-voice can be

compared to early polyphonic chant settings. The tintinnabuli style also

returns to a form of tonality, but not a functional one. While the hallmark

of function harmony, the triad, is omnipresent in tintinnabuli, it has been

stripped of its functional role. It is remarkable how Pärt managed to fuse

all these different ideas into a musical style that appeals to audiences

around the world.
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figure 10.5 – The opening
measures of Summa. The
piece is a setting of the Credo,
consisting of 16 three-bar
sections with 7, 9, and 7 sylla-
bles. The voice distribution
is mirrored in every section:
sa–satb–tb. The alto and
bass have the m-voices, the
soprano and tenor the cor-
responding t-voices. If one
skips the small, slurred orna-
ments, the m-voices walk up
and down an E natural minor
scale, while the t-voices are
constrained to the E minor
triad.
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10.3 Analysis
We now turn to Summa, of which several analyses have been published

before. The first,5 de laMotte-Haber (1996), precededHillier’smonograph

on Pärt and misses some key points: it focuses on t-voices rather than
the m-voices and discusses the version for string quartet, in which one

cannot see how Summa is structured around the text of the Credo, the

Christian statement of belief. Hillier (1997) points out that syllables in

fact form the ‘units’ of the piece and goes on to reveal the structure of

them-voices. But their relation to the t-voices remains unclear: although

their overall contours correspond, he writes that the “note-to-note logic

of the t-voice is, exceptionally, self-contained” (p. 112). In an evenmore

extensive analysis, Patrick (2011) does not resolve this issue either. The

explanation I will propose below indeed moves beyond a note-to-note

logic and describes the t-voices as tintinnabuli processes that also depend
on previous notes in them- and t-voices.

But let’s start at the beginning. Hoping tomake the textmore accessible,

I first present an analysis and then a formalization, even though the two

developed in tandem and often overlap.

text and structure Figure 10.5 shows the opening bars of Summa in the

version for mixed choir, which I analyze here.6 The first thing that stands

out is the overall organization. Summa is divided in 16 sections spanning

three measures each. The first and final bars of a section are sung by
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the highest (sa) or lowest (tb) two voices, the middle bar is tutti, and

this pattern is mirrored in the next section. The organization becomes

transparent when observing that syllables are the unit of time. The Credo

consists of 366 syllables,which Pärt evenly distributed over the 16 sections.

Each section contains 23 syllables, divided over three measures of 7, 9 and

7 syllables respectively (see supplement e1). That amounts to a total of

368 syllables, twomore than found in the Credo. The final two bars are

composed slightlymore freely to compensate for this, but as a result break

some of the regularities seen in the rest of the score (see supplement e6).
The text setting is homophonic and largely syllabic: most syllables are

sung on a single note, some on two notes. Pärt always slurred those two

notes, and we can think of the second one as an ornament or passing note

(cf. Hillier, 1997). This distinction between ordinary notes and ornaments

will be important. The text setting is “fortuitous” (Hillier, 1997) insofar

that it is dictated by the numerical patterns that Pärt laid out, not by the

text itself. This can be seen in the second bar, where the alto and soprano

end without ever finishing the word “factorem”. The phrasal structure of

the text ismaintained in themusic and indicated by commas, but these do

usually not overlap with bar lines. A notable exception, as Hillier (1997)

points out, is the very first phrase: “Credo in unum Deum.” Its seven

syllables may well have inspired the larger structure.

melodic voices Summahas twomelodic voices: the alto and the bass. The

opening bar makes clear that the soprano is the t-voice for the alto, and
that the tenor forms a pair with the bass. Both t-voices only sing notes
from an E minor triad, and the m-voices only use the E natural minor

scale, making Summa completely diatonic. The E natural minor scale

also forms the backbone of the m-voices. To visualize this, Figure 10.6

plots only the notes of the alto and bass, and ignores ornaments and note

durations.7 The blue line highlights that the alto is basically walking up

and down the E natural minor scale. The bass exactly mirrors the alto,

but has rests in different places. Closer inspection shows that the alto is

repeating a fifteen-note pattern, which is interrupted by bars of silence

and a return to the tonic whenever it enters, or when a new section starts.

As a section contains sixteen syllables, the fifteen-note pattern starts at

a different point in every section: it is shifted one step to the left. And so

one can alternatively describe the alto as follows: every section startswith

the tonic, followed by the pattern, but rotated one more step to the left

(cf. Hillier, 1997; Patrick, 2011). Both accounts have the same result, and

explain the feeling that the piece could continue forever, were it not for

the final two bars.

tintinnabuli voices The tintinnabuli voices in Summa have probably

puzzled scholars most, even when they have ignored ornaments. Their

relation to them-voices is not as direct as in Für Alina or Fratres, where the

t-voice consistently takes afixed tintinnabuli position. For example,while

the first C4 of the alto is paired with a B4 in the soprano, the third time
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figure 10.6 – The melodic
voices each repeat a 15-note
pattern that walks up and
down a scale. Diatonic pitch
is shown vertically and time
horizontally, measured in syl-
lables. The notes are shown
as dots and ornaments have
been omitted. The repe-
titions of the underlying
15-note pattern are shown
in the background. In every
section (marked by rehearsal
numbers), a voice sings the
tonic (E) followed by this
pattern, but rotated one step
to the left.
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we encounter the C4 in bar 5, the soprano sings a G4. Both Hillier (1997)

and Patrick (2011) conclude that the t-voices only resemble the shapes

of them-voices, but are not predictably related to it. The t-voices indeed
cycle through a 30-note pattern that is similarly shaped as them-voices
but with slight variations in each repetition. Still, there appears to be an

underlying logic. To identify it, I overlaid all repetitions of this 30-note

pattern and worked out an approximate pattern that best approximates

all of the repetitions (see supplement e2). Except for a few notes, the

approximation will thus be the same as each individual repetition in the

score.

Figure 10.7 shows the approximate patterns and reveals the constraints

that determine the t-voices. First, the soprano is at least two triad notes

above the alto and the tenor at least one triad note above the bass. Second,

the t-voices only move step-wise to neighboring triad notes (repetitions

are not allowed). It turns out that one obtains the t-voices by picking
the lowest note satisfying these constraints at every time step. This also

explains some of the slight variations mentioned above: these are caused

by themelody voice jumping back to the tonic. And so the t-voices are not
in a fixed position but appear to be determined by a process that depends

on the current melody note and the previous tintinabulli note.

ornaments Pärt has addedornamental notes to both them- and t-voices.
They are always triad notes, which suggests that we can think of the

ornaments as tintinnabuli voices themselves. The approximate patterns

in Figure 10.7 show that ornaments are not randomly inserted, but the

underlying pattern is hard to pin down. For the soprano and tenor we see
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figure 10.7 – Approximate
patterns for all voices. These
patterns of notes (•) and
ornaments (+), when re-
peated throughout the piece,
approximate the melodies
of each of the voices. The
approximate patterns were
constructed manually by
comparing all repetitions,
so as to make the approxi-
mation as good as possible
(see supplement e2). For
the t-voices, they however
remain approximations: they
are better understood as
functions of the m-voices
(Figure 10.8), not as repeti-
tions of the patterns shown
here.

E3
G3

G4

B3

B4

E4

E5

Alto and soprano Bass and tenor

note ornament
alto

soprano

bass

tenor

that ornaments only occur when the melody moves in the same direction

for more than two steps, and the ornament reverses the direction. I see no

obvious correspondence between ornaments in the alto and bass pattern.

In particular, they are not mirrored, but they do use the same ornaments

(E and B) when passing the G and C on the way up. That means that

for the alto and bass ornaments, the approximate patterns are the best

description we currently have.

rhythm Finally, the rhythm in Summa is determined by two constraints:

first, that syllables start together in all voices (homophony), and second,

thatmelodynotes have the duration of at least a quarter note. This implies

that if the alto has an ornament where the bass does not, the bass note

needs to be twice as long, and vice versa. If a t-voice has two notes where

themelody has one quarter, the t-voice has to half both of its notes. These
rules are consistently applied throughout the piece, except the penulti-

mate bar, where the bass and tenor start the “Amen” before the alto and

soprano.

10.4 Synthesis
We now formalize the construction of Summa laid out above, so that we

can implement an algorithm to reconstruct the score. Our formalism

takes inspiration from Roeder (2011) by distinguishing an m- and a t-
space in which them- and t-voices live. The framework of Roeder (2011)

is so general that it even allows for the possibility that the spaces contain

objects other than pitch classes. That does not help us here: we need to

generate specific pitches, and even pitch classeswould be too general.

Our formalization therefore starts in a larger pitch space𝒩 that con-

tains all semitones between, say, C0 and C8, which are naturally ordered

(e.g., G2 < A3). If we call a subset S that spans nomore than an octave a

scale, we can generate a scalar pitch space ⟨S⟩: the pitches (in𝒩) with the

same pitch class as elements in the scale. In this way, we let the E-natural

minor scale generate the m-space ℳ, in which the m-voices can move

around. The t-voices live in the t-space𝒯, which is generated by the E
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minor triad–also a scale under this definition. In short,

ℳ = ⟨E3,F#3 ,G3,A3,B3,C4,D4⟩ (10.1)

𝒯 = ⟨E3,G3,B3⟩. (10.2)

Both spaces are subsets of𝒩, and 𝒯 is moreover a subset ofℳ. But the

latter need not be the case: in Fratres the triad falls outside of m-space
because of the C^ (Figure 10.3).
melodic voices We can construct the basic pattern sung by the alto by

concatenating fragments of the four melodic modes, or by simply listing

its pitches:

𝛼 = (E4,D4,C4,B3,A3,G3,F#3 ,G3,A3,B3,C4,D4,E4,F#4 ,G4,F#4 ). (10.3)

The alto sings this 16-note pattern 16 times, but every time rotates the

tail of the pattern one step to the left: everything after the first note. For

a sequence x = (x1,… , xN), let Rotate(x, d) = (xi−d mod N : i = 1,… ,N)
be its rotation by distance d. Then the tail rotation by distance d can be

defined as TailRotation(x, d) = (x1) ` Rotate((x2,… , xN), d), where the

cup “`” indicates concatenation. And so

alto = TailRotation(𝛼,0) ` … ` TailRotation(𝛼, 15) (10.4)

gives all notes of the alto. The bass mirrors this. Let mirrorℳ(n, c) be
themirror image of nwith respect to c: the pitch which is equally many

steps (inℳ) apart from c as n is, but in the other direction. Then write

transposeℳ(n, d) for the transposition of note n by d steps. If both these

operations work entry-wise on sequences,

bass = transposeℳ(mirrorℳ(alto,E4),−6). (10.5)

tintinnabuli processes The central concept in tintinnabuli music is ar-

guably the tintinnabuli position. Different fromHillier (1997), it will be

convenient not to treat positions in octaves as equivalent. Instead, we

denote the tintinnabuli note in p-th position above a given note n byTp(n),
and the one below it byT−p(n), and allow p to be any integer. For example,

in our case T2(A3) = E4 since this is the second triad note above A3, and

T−1(A3) = E3. One way to define the function Tp, is as follows:

T0(n) = n (10.6)

Tp(n) = min{t ∈ 𝒯 : t > Tp−1(n)} (10.7)

T−p(n) = max{t ∈ 𝒯 : t < T−(p−1)(n)}. (10.8)

This definition is recursive: we think of T2(n) as the first tintinnabuli note
above T1(n), that is, as T1(T1(n)). The function is defined on all of𝒩, but
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figure 10.8 – Three
tintinnabuli processes
for a melody that walks up
and down a scale. The con-
stant process (a) remains in
the same tintinnabuli posi-
tion p, while the alternating
process (b) flips the sign of
the starting position every
step. The step process (c)
only moves to neighboring
triad notes, while keeping
a distance of at least p triad
notes from the melody. This
is the process used in Summa.

E4

E5

A. Constant process B. Alternating process C. Step process

melody process position p: 1 –1 –22

we are most interested in the case when the position p is nonzero, and Tp

mapsℳ to𝒯.
As we have seen, the tintinnabuli voices in Summa are not solely de-

termined by the current melody note, but also by previous notes. The

same is true for Hillier’s alternating position (Figure 10.2). Because of the

sequential dependency, I would propose to speak of a “process” instead

of a “position” in such cases. To define this formally, consider a sequence

of melody pitchesm1,… ,mK inℳ. A tintinnabuli process X determines a

corresponding sequence of tintinnabuli notes t1,… , tK in𝒯 via

ti = X((t1,… , ti−1), (m1,… ,mK)), i = 2,… ,K . (10.9)

Such a process can thus depend on all notes in themelody, past and future,

but only on previous notes in the tintinnabuli voice. Of course, we do need

to specify the starting point t1, or else the process cannot start.

The simplest example of a tintinabulli process is one that always returns

the same tintinabulli position (Figure 10.8a),

Constantp(mi) = Tp(mi). (10.10)

This shows that a position is a special case of a process. A second example

would be Hillier’s alternating position. Let Pm(t) denote the position of t

with respect tonotem, that is, thepositionp such that thep-th tintinnabuli

note ofm is t, or Tp(m) = t. Then the alternating process is

Alternate(mi,mi−1, ti−1) = T−pi
(mi), where pi = Pmi−1

(t), (10.11)

which basically flips the sign of the starting position (see Figure 10.8b).
The tintinnabuli voices in Summa are determined by amore intricate

process that ensures the voices always satisfy two constraints. At every

point, ti has to be (1) at least in position p above themelodynotemi, and (2)

one step in the triad apart from the previous note ti−1. And so the process

moves stepwise through T-space while staying at least in position p. This

stepwise tintinnabuli process in position p can be defined as

Step
p
(mi, ti−1) = {

T−1(ti−1) if this is≥ Tp(mi)
T+1(ti−1) otherwise

, for p ≥ 0. (10.12)
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This process will satisfy both constraints for a stepwise melody as long

as the starting point t1 is at least in position p. Although this would also

be defined for p < 0, it seemsmore appropriate to flip the definition for

p < 0:

Step
p
(mi, ti−1) = {

T+1(ti−1) if this is≤ Tp(mi+1)
T−1(ti−1) otherwise

, for p < 0.

(10.13)

This resulting process is illustrated in Figure 10.8c.

ornamentation As the ornaments are always triad notes, we can think of

the ornaments as t-voices, but ones that can also be silent (no ornament),

besides singing (an ornament). This translates into a hierarchy of t-voices:
the tenor ornaments form a t-voice for the tenor, which is a t-voice for the
bass. We define a tintinnabuli process that generates the ornaments for

both the soprano and the tenor (see supplement e3). The process returns
the previous melody note if it does not equal the next melody note (them-
and t-spaces are identical), and while it remains within certain bounds:

RepeatPrevious
b,B,c,C(mi−1,mi+1) =

⎧⎪

⎨
⎪
⎩

whenmi+1 ≠ mi−1,

mi−1 and b ≤ mi−1 ≤ B

and c ≤ mi+1 ≤ C

silent otherwise.
(10.14)

Without the bounds, the process cannot avoid ornaments at the extremes

of the range (e.g., G5 or B3 for the soprano), and one can imagine why

Pärt might have wanted to avoid those. Although it remains a question

whether Pärt actually thought of the ornamentation in this way, the reuse

of formal machinery seems appealing.

Finally, the alto and bass have ornaments at fairly regular positions

along the 16-note melodic pattern. We therefore define a process that

repeats a fixed sequence of ornamental pitches x, which can also contain

silences. Since themelodic pattern is repeatedwith a tail rotation, we also

need to rotate x to keep it aligned:

TailRotatedPatternx(mi) = ri mod |x|, (10.15)

where r = TailRotation(x,floor(i/|x|). The pattern of ornaments we use

is illustrated in Figure 10.7 (and in supplement e4).

implementation To summarize, our formalism describes the notes of the

alto as a tail-rotated pattern and the bass as itsmirror image. The soprano

and tenor are stepwise tintinnabuli processes in second and first position

respectively. Ornaments are also described as tintinnabuli processes. We

can then insert the notes and ornaments into themeasure structure dis-
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A. Types of errors in the reconstruction B. Error frequencies
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figure 10.9 – Evaluation of
the algorithmic reconstruc-
tion. This is illustrated in
(a) by comparing the first
bar (bottom staves) with
the original (top staves).
We encounter four types
of reconstruction errors:
ornament insertions (red),
ornament deletions (blue),
duration errors (green) and
pitch errors (not shown). In
total we find 86 errors (6.7%)
after adjusting ornamented
exits (b). Over half of these
are duration errors, resulting
from ornament insertions
or deletions. And so only 43
ornaments and two pitches
need to be corrected (3.5%)
to reproduce the original
score.

cussed in the previous section, and determine the note duration. For the

latter, we first assign every syllable a duration: 2 if either the alto or the

bass has an ornament, and 1 otherwise. Then we evenly distribute the

available time over the notes of a voice. I implemented all this in Python

using the computational musicology packagemusic21 (Cuthbert & Ariza,

2010). The codebase, named tintinnabulipy, provides a convenient inter-

face for plotting and working with t- andm-spaces. It implements all of

the tintinnabuli processes described here but is also general enough to

be useful for analyses of other compositions by Pärt. Most importantly,

it allowedme to generate almost all melodic material of Summa in just a

few lines of code (see supplement e5).

10.5 Evaluation
Howmuch of the original composition is reproduced by our algorithm?

Figure 10.9a compares the first bar of the original score with the algorith-

mic reconstruction. The reconstruction contains four mismatches–I will

call these errors for simplicity–in the second and third syllable, which have

been colored according to their type. First, we see an ornament insertion

in the third note of the reconstructed alto part: the reconstruction has

an ornament, but the original does not. Conversely, an ornament deletion

occurs when the original is ornamented, but the reconstruction is not,

as with the fourth note in the alto. We also see several duration errors:

the second note of the soprano for example has double the duration of

the original. Finally, pitch errors occur when a note has the wrong pitch,

but these do not appear in this excerpt. I automated this evaluation to

systematically compare the reconstructed score with the original score,

part by part and syllable by syllable.8

The reconstructed score contains 1288 notes, of which 106 (8%) have

one or more errors. Most errors only concern the note duration (60 notes

or 56%), but we also find 2 pitch errors, 15 ornament deletions, and 34

insertions, eight of which are in the final two bars. These results show
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that our algorithmic reconstruction is fairly successful: it correctly repro-

duces well over 90% of the notes in Summa. And this statistic arguably

underestimates the performance, since all duration errors are explained

by ornament insertions or deletions. If the alto for example misses an

ornament, this causes the corresponding soprano note to be too short.

And so fixing insertion and deletion errors will automatically resolve all

duration errors. That means that only 51 notes (4%) in the reconstruc-

tion really need to be corrected in order to reproduce the original score

faithfully.

The remaining errors however reveal another plausible regularity. In

the reconstruction, one finds several ornaments right before a voice exits

to be silent for somemeasures, whereas ornamented exits are not found in

the original score. Removing all ornamented exits resolves six insertions

and consequently also reduces the number of duration errors, leaving a

total of 86 errors (7%). Of these, 45 (3.5%) are not duration errors and

need to be corrected. The alto needs themost correction (19 notes) and

is around twice as inaccurate as the soprano, tenor, and bass (10, 7, and

9). This is also summarised in Figure 10.9b. Taking into account that

eight errors occur in the final bars, andmany other errors remain in the

ornamentation, the reconstruction seems very accurate and underscores

just howmeticulously Pärt constructed Summa.

10.6 Discussion and conclusion
Arvo Pärt is known for his unique compositional style, tintinnabuli, which

has often been described as algorithmic. To assess how algorithmic Pärt’s

tintinnabular music is, this study has attempted to reconstruct one piece,

Summa, algorithmically. After analyzing and formalizing the piece, I ar-

rived at an implementation that reconstructedmost of the original score,

showing that at least 93%of thenotes inSumma canbeplausibly explained

by an algorithm. Most of the errors, moreover, are faulty note durations

caused by insertions or deletions of ornaments in other voices. Correct-

ing these ornamental errors would also resolve the duration errors. This

means that only 3,5% of the notes have to be corrected to retrieve the orig-

inal score, and demonstrates that Arvo Pärt approached the composition

of Summa extremely systematically.

One might wonder whether the algorithm that I proposed also de-

scribes the compositional process: were these the procedures Pärt fol-

lowed? That may seem plausible, but only the composer can answer that

question and Pärt is unlikely to do so.9 If my analysis is mistaken, the

mistakes are probably in the description of the ornamentation, where we

found themost errors. However, we should also consider that the com-

poser may have decided to adjust some of the ornaments and that there

are no further regularities to be found. After all, multiple corrections of the

score have been published. Although I have not been able to compare all

editions, some differences in ornamentation can also be heard in record-
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ings.10 These corrections also leave open the curious possibility that the

composer hasmade ‘mistakes’ when applying his set of rules. Doing so by

hand, rather than by computer, is far from straightforward and would be

comparable to a composer fromearlier daysmaking an occasionalmistake

in voice leading.

While analyzing Summa, I developed some novel formal machinery.

Most notably, I proposed tintinnabuli processes to describe how a t-voice
can be produced from an m-voice while relying on parts of the melody

other than the current melody note. This turned out to be a fruitful gener-

alization of Hillier’s tintinnabuli positions. I expect other analyses will

also benefit from this concept–as they will from formalizationmore gen-

erally: the intricacies of works like Summa are arguably best described

in a formal language. This study demonstrates that it can be useful to

also implement that formalism, and I hope the resulting codebase will

contribute to further formal and computational analyses of Pärt’s work.

Themethodology this study proposed for that, analysis by synthesis, is

best suited for understanding algorithmic music: it essentially tries to

recover the rules that generated a piece. But it could have wider applica-

bility. Strictly speaking, any piece can be algorithmically reconstructed by

simply enumerating all notes in the score. Themore rules a piece satisfies,

the more concise the description can be. Algorithmic music is an extreme

case, but other types of music also follow rules. It may well be possible to

for example recover fragments of themiddle voices in a Bach chorale from

themelody, a figured bass, and voice-leading rules.

That is not to say that algorithmic reconstruction should replace other

forms of scholarship. This study has deliberately disregarded all matters

of interpretation, which are of course central to understanding the music

of Pärt in a broader sense. For that, a methodology like analysis by syn-

thesis seems less useful. But when it comes to understanding how Arvo

Pärt’s tintinnabular compositions work, this studymay provide a fruitful

starting point.

Notes
1 This is based on data released by Bachtrack, a classical music website that tracks many
thousands of concerts every year. The website annually releases statistics about concert
performances, including the most performed classical composer. In the year 2018 (bachtr
ack.com/classical-music-statistics-2018), these statistics were based on almost 20.000
concerts, in which Pärt was the top contemporary composers, as he had been since 2011 (see
bachtrack.com/classical-music-statistics-2017). In 2019, John Williams came out first, with
Pärt second.

2 I found two conference papers that use small fragments of Pärt’s compositions as exam-
ples in a live coding setting (Bertram, 2014; Ruthmann et al., 2010). Krämer (2015) cites a
script by Christopher Ariza and Michael Scott Cuthbert that generates a score for Pärt’s Pari
Intervallo, which can indeed be found in an old release of music21: github.com/changtailia
ng/music21/blob/master/music21/composition/phasing.py. David Cope appears to have
discussed Cantus in Memoriam Benjamin Britten in a course on computer-assisted composition
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in 2008. De Paiva Santana and Bresson (2012) presented a poster that modelled Spiegel im
Spiegel in OpenMusic (see also Shvets & De Paiva Santana, 2014). Outside the academic
literature, Guy Birkin in 2015 released the album Tintinnabuli Mathematica vol. I with music
generated in Mathematica using tintinnabuli rules and number sequences. He explains the
process in a blog post available at aestheticcomplexity.wordpress.com/2011/11/11/program
ming-arvo-part.

3 My translation. It is instructive to read his comment in full:

Ich habe große Schwierigkeiten, wenn ich meine Werke kommentieren
soll.

Ich bin dafür, daß zwischen Wort und Musik ein besonders behutsames
Verhältnis sein muß. Wir müssen der Musik eine Chance geben, sich allein
auszudrücken. Wörter treiben die Musik in die Enge. Und auch die Musik
neigt dazu, sich von Wörtern abhängig zu machen. Ich sehe in dieser
»überkommunizierten« Gesellschaft Gefahr für die Existenz der Musik.

Ich muß in mir Raum frei lassen für Musik, und wenn dieser Raum mit
Worten besetzt wird, bleibt mir kein Bedürfnis, mich mit Musik auszu-
drücken — und umgekehrt: wenn ich ein Musikwerk geschrieben habe,
bleibt nichts mehr mit Worten zu sagen übrig.

⋆ ⋆ ⋆

Ich habe ein hochformalisiertes Kompositionssystem entwickelt, in dem
ich seit 20 Jahren meine Musik schreibe. In dieser Reihe ist Summa das
strengstgebaute und verschlüsselste Werk. Die Verschlüsselungen finden
sich in vielen Schichten der Partitur.

(Berlin, den 15.6.1994)

4 This analysis is based on the 1980 version for violin and piano.

5 Shenton (2012) also cites the masters thesis by Kosak (1994), which I have however not
been able to find.

6 UE 33 686, Korr. III/2012, to be precise.

7 As the piece is diatonic we only have to represent pitches in the E natural minor scale.
That means we let E2 correspond to 0, F#2 to 1, G2 to 2, and so on.

8 To obtain a digital version of the original score, I transcribed my physical copy in MuseScore.
I manually compared all errors identified in reconstruction against the physical score, and
this allowed me to resolve some transcription mistakes.

9 In the comments that are reproduced in footnote 3, Pärt expresses his “great difficulty” in
commenting on his own works as he wants to give the music a chance to express itself.

10 To give just one example, in measure 12 the score used in this study ornaments ’ve-’ in
’verum’ with an E4 in the alto, while the recording by the Hilliard Ensemble (1987) sings a G4,
as does the more recent recording by Vox Clamantis (2016).
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supplementary materials e1 Textual structure of Summa • e2 Approximate patterns
• e3 Tenor and soprano ornaments • e4 Alto and bass ornaments • e5 Implementation:
code sample • e6 Ending of Summa

code All code will be made publicly available via github.com/bacor/algo-part,

reference This chapter has not yet been published.

author contributions bc designed the study, conducted the research, and wrote the
chapter.
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Postlude

M
usic exemplifies the richness and diversity of human

life, I wrote in the opening of this dissertation. In the

chapters that followed, I have looked for ways to for-

mally understand andmeasure some of that richness.

By slicing chants into natural units, I tried to capture

melodicmodes inplainchant. Like the sounds that carrymusic, the shapes

of melodies turn out to be best described as a combination of waves, in

this case, cosine functions. But those shapes, when it concerns phrases,

can vary almost smoothly and do come in clear categories. This search

for categories, or statistical modes, became a recurrent theme. I looked

for modes in contours, in plainchant, but also in the rhythm of Malian

jembemusic or the vocalizations of lemurs. And just as small motifs re-

veal regularities in those rhythms, small motifs reveal regularities in the

movement of the melodies. But rarely is that movement as regular, are

the musical shapes as clear, as in the hands of Arvo Pärt, whose music is a

treasure trove of formal musical structures.

11.1 Contributions
Let me unpack all this and list the contributions in this dissertation.

corpora and software Thefirst lineof research laid the technical ground-

work: corpora, parsers, and other software. I released two chant corpora,

Cantus Corpus andGregoBase Corpus. Both repackage existing corpora

in away thatmakes themmore suitable for computational research. With

the same goal in mind, I developed the Python library chant21 that im-

proves support for two chant formats in music21: Volpiano and gabc. I

proposed parsing expression grammars for both gabc and Volpiano, and

used these to build a hierarchical representation of the chant, segmenting

it into neumes, syllables, words, and sections. Besides chant corpora, I



proposed a way to index folk music corpora in a proof-of-concept project

named Catafolk.

chant and modes The second line of research investigates plainchant

and its modes in particular. I proposed a distributional approach to

mode classification inMedieval plainchant using tf–idf vectors, which

outperformed twoother approaches. The distributional approach still per-

formed reasonably well using a contour representation that was stripped

of almost all pitch information, demonstrating thatmode is more than

scale. Crucially, this worked only when segmenting the chant in its natu-

ral units: groups of notes corresponding to syllables or words in the text.

This is consistent with the idea that chant is composed by centonization,

a process in which existing chunks of music are recombined to form new

chants.

To better understand the classifier, I introduced a simple attribution

method,witness coloring, that highlights which motifs contribute to the

classification. For antiphons, this method consistently highlights differ-

entiae, the psalm endings sung before repeating the antiphon that frames

it. Using an entropy measure, I furthermore showed that differentiae-

antiphon connections are more predictable in some modes than oth-

ers and that differentiae are more predictable than antiphons. Finally,

I trained a recurrent neural language model on plainchant, capable of

generating chant. The neural chantmodel learns richmusical represen-

tations. It for example appears to represent pitch information without

being explicitly trained to do so, and even when trained on interval repre-

sentations. I also suggest that the statistical modes in the learned chant

space may correspond tomode-genre combinations.

melodic contour The third line of research focused on the analysis of

melodic contour. In a first case study, I confirmed themelodic arch hy-

pothesis in plainchant, by comparing phrases to a novel baseline of ran-

dommelodic segments. This eventually led to the observation that prin-

cipal components of melodies approximate cosines. Explaining this by

a particular covariance structure observed in this data, motivated cosine

contours, a novel contour representation that uses the discrete cosine

transform. Turning to the typology of melodic contour, the umap-dip
test could discriminate clustered from unclustered synthetic contours

but failed to find any evidence for clustering in actual phrases. In other

words, phrase contours do not appear to cluster. Further identifying a

hidden tolerance parameter in Huron’s typology, leadme to argue for a

continuous view of contour.

motifs A fourth line of research concernedmusical motifs: small frag-

ments of melodies or rhythms. When classifying modes in plainchant,

using the right segmentation of the chant turned out to be key, and sug-

gested that the units of plainchant are motifs based on the text. Fixed-

length motifs nevertheless prove useful, for example when visualizing

144 Chapter 11 Postlude



rhythm. After identifying some problems in raster plots, I propose ways

to visualize inter-onset interval data using rhythm triangles. I use these

to reanalyze rhythms inmusic and in vocalizations of a range of species.

Thinking in termsofmotifs also led to ameasure of isochrony that extends

the nPVI. Inspired by rhythmic motifs, I visualized the occurrence of short

melodicmotifs inmelody squares, whichmotivated several cross-cultural

generalizations.

algorithmic music Finally, I presented a algorithmic reconstruction of

Arvo Pärt’s Summa that almost completely reproduces the original score.

It is a case study in analysis-by-synthesis, that resulted in new formal ma-

chinery, tintinnabuli processes, and software, that can help to formally

understand the music of Pärt. Although this music may deserve the label

algorithmic, it is of a very different nature than the plainchant generated

algorithmically using the neural chant model.

11.2 Discussion and future directions
Returning to the very first chapter, I motivated this dissertation against

an evolutionary backdrop: why did humans evolve to become musical

animals? What abilities allowhumans to produce and perceivemusic, and

what is their evolutionary history? To pinpoint those abilities, we need to

understandwhat formsmusics can take. Analogous to amulti-component

perspective onmusicality, this requires a typological perspective onmu-

sics. When it concernsmusic in anarrowsense—formal aspects ofmusical

behavior, such as the information contained in musical scores—it makes

sense to approach typology computationally: tomeasure musics.

Compared to the breadth of that original agenda, this dissertation takes

only some very small steps, as it only studied a fewmusical phenomena

(modes, contours, andmotifs). The cross-cultural generality of the studies

is moreover rather limited: I have primarily analyzed folk music from the

Essen Folksong collection, plainchant (Cantus and GregoBase), and the

Densmore collection. As I have noted in chapter 2, the ideal would be a

representative, global sampleofmusic corpora. Collecting sucha corpus, if

at all possible, would require collaboration at amuch larger scale, inwhich

music researchers, as a community, would have to bring together their

resources—precisely what motivated the Catafolk project. Nevertheless,

this dissertation already suggests several interesting directions for future

work and I want to highlight a few of those.

This dissertation studiedmodality inWestern plainchant only, and so

perhaps the most promising future work would be to extend this work

to other traditions. As mentioned in chapter 4, other studies have also

characterizedmodesmotif-basedmodels were also used to classify raga

or makam. This convergence of models in different musics, could be seen

as some sort of computational resolution to the problem of incommensu-

rability. If the modes in plainchant, raga, and makam can be described
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using the same computational model, the concepts become formally com-

parable, even if their musical meanings are not comparable. This deserves

further investigation.

A closely related question that deserves further study concerns the rela-

tionship between statistical modes in melody space andmusical modes.

Chant representations produced by a recurrent neural network (chapter 5)

appeared to suggest that statistical modes in plainchant may correspond

to mode-genre pairs. This raises the question of whether modalities in

other traditions, such as ragas or makams, correspond tomodes in some

melody space. If so, it could suggest an explanation for why multiple

musical traditions organize their repertoires around modes (Powers et

al., 2001). Perhaps a large enough repertoire will tend to be organized

in classes, corresponding to statistical modes in the melody space. It is

conceivable that this is a by-product of learning melodic expectations

statistically. Onemight also wonder if there are common tendencies in

how those modes will be theoretically characterized, such as along the

lines of scales and contours.

Another promising line of research that this dissertation unfortunately

not touched upon, is the historical development of plainchant. With

manuscripts spanning several centuries, the Cantus database is a very

promising test bed for studying models of cultural evolution. What is

particularly promising is the variety of ‘phylogenetic signals’ that one

can find in the corpus. From the perspective of this dissertation, one

might think of deriving such a signal from themelodies themselves, by

measuring their melodic similarity. But even just the contents of the

manuscripts already provide an informative signal: which feasts do they

contain, and what chants are used for which particular feast? This can

be indicative for chant traditions, without even requiring any melodic

transcriptions.

Besides mode, contour was the second protagonist of this dissertation.

It seems likely that studies of intonation contours in languagemay profit

from our approach tomelodic contour. Concretely, themelody development

model, suggests that the vocalizations of infants (not only their cries) also

gradually increase in complexity during the first six months of develop-

ment (as evidenced by an increasing number of arches in the f0 contour)

and that this is an important step toward acquiring a language. In a vast

dataset of almost 70,000 vocalizations,Wermke et al. (2021) find evidence

for a gradual increase in complexity. The study relies on a classification of

vocalization contours into either a simple or complex category. Using co-

sine contours seems like a promising alternative: as it describes a contour

as a combination of waves, vocalization complexity should quite naturally

translate into more energy in the higher-frequency components.

In that same spirit, the methods I developed to study the clusterability

of melodic contour, seem promising for studying prosody. One interest-

ing case concerns the ToBI system that uses a used to describe English

intonation contours (Silverman et al., 1992). Do the types of intonation

contours indeed correspond to clusters of contours? This is the exact same
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question I asked about musical phrase contours and may be addressed

using the dist-dip test.

Motifs were the third antagonist, be it in rather different ways. Our

work onmode classification highlighted the need to use variable-length

motifs, while fixed-lengthmotifs proved informative in amore explorative

visualizations. In the case of rhythmic motifs, an interesting extension

would visualize the rhythms in vocalizations of various bird species us-

ing rhythm triangles. An obvious starting point would be Xeno-canto, a

vast collection of recordings of bird sounds from around the world. It is

also where Roeske et al. (2020) got their nightingale recordings that were

visualized in chapter 7. A challenge, and in itself an important problem,

would be automatic onset detection, for which Roeske et al. (2020) may

offer a starting point.

11.3 Reflections
Iwould like to endon apersonal note. Likemost dissertations, this one did

not come together easily and also did not follow the path the first research

proposal laid out. This dissertation was originally intended to be about

the cultural evolution of language, not about music. Accordingly, I spent

the first year of my Ph.D. drafting a syllabus on the evolution of language

andmusic: a fascinating but perhaps too ambitious project. Nine months

and several chapters later mymotivation had evaporated, and I decided

to quit.

In hindsight, my master’s, combined with too many other activities

must have leftmenearly overworked before I even startedmyPh.D. Choirs

offered a welcome escape, singing lessons soon became a form of therapy,

and by the end of the first year, I had taken up a study in classical voice

at Utrecht Conservatory. When I told my main supervisor, Jelle, that I

had decided to exchange the university for the conservatory, he suggested

to also exchange language, my original research area, for music and com-

bine singing and science instead. This worked out surprisingly well. The

conservatory gave me energy, direction, and inspiration and formed a

productive counterweight to the intellectual work at university. When

a pandemic forced academics to work from home, conservatories would

soon open their doors again and offered another welcome escape.

But having ‘lost’ a year on a syllabus that never materialized and being

occupied by a conservatory study, the pressure to produce some sort of

academic output made me opportunistic. Not driven by a deeply felt

fascination and limited by practical constraints, I jumped on whatever

came along. Modes? Sure. Contours? Why not. Given the circumstances,

this was fine, but it fed my insecurities: my academic work felt rushed,

unguided, and shallow—even though others evidently disagreed.

Perhaps this iswhy I couldnot forge a compellingoverarchingargument

out of my research when the time came to write things up. I instead

decided to focus on the interludes. Taking more liberty than scientific
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articles allow for, I enjoyed writing them, and finished a first version

of this dissertation in September 2022. The manuscript was somewhat

unpolished and unconventional, but finished. Only some five months

later, did I find the energy to start with the final corrections, to find that I

now agreed with most of my supervisors’ earlier reservations. I have tried

to polish the dissertation, but I amwell aware of the many imperfections

that remain. So be it—hora est.
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a1 Data and code
All data and code used in this study have been made available online (see the

end of page 44). All randomness in the code has been fixed, so it should in the-

ory be possible to reproduce our results exactly. The evaluation metrics of all

experiments are already included in the repository, as is the data used in the first

run of the experiment; this should be sufficient for reproducingmost figures. We

have includedmodel predictions and tuning results only for the first run of the

experiment. Detailed logs of everything from data generation to visualization can

also be in the repository, together with manymore figures besides those included

in the paper and the supplements. In particular, the repository contains heatmaps

withmultiple evaluationmetrics (accuracy, precision, recall, and F1) for all models

and all experimental conditions.

a2 Filtering
As described in the main text, we filtered the total dataset of 497,071 chants to

obtain a clean subset of responsories and antiphons. The effects of all of the filters

are logged and will be made available online. As an example, belowwe show the

output of the series of filters applied to obtain the full set of antiphons used in this

study.



Exclude all chants with an empty volpiano field

> 87.20% removed (433443 out of 497071; 63628 remain)

Exclude all chants without notes

> 2.87% removed (1825 out of 63628; 61803 remain)

Include only chants with simple modes: 1-8, not transposed

> 23.02% removed (14227 out of 61803; 47576 remain)

> 20.65% removed (9823 out of 47576; 37753 remain)

Filter chants whose incipit is identical to the full text

> 14.59% removed (5507 out of 37753; 32246 remain)

Include only chants with a certain genre (here: antiphons)

> 52.06% removed (16787 out of 32246; 15459 remain)

Exclude chants that do not start with a G clef

> 0.05% removed (7 out of 15459; 15452 remain)

Exclude chants that contain an F clef

> 0.00% removed (0 out of 15452; 15452 remain)

Filter chants with missing pitches: containing the substring 6------6

> 7.54% removed (1165 out of 15452; 14287 remain)

Exclude all chants with non-volpiano characters

> 0.03% removed (5 out of 14287; 14282 remain)

Only include chants with '---' in their volpiano

> 0.08% removed (11 out of 14282; 14271 remain)

Filter duplicate chants: whose notes occur multiple times

> 2.84% removed (406 out of 14271; 13865 remain)

a3 Dataset statistics
The number of chants, their average length, and the number of notes for each

dataset. We sort datasets by genre, then by subset (includemelody variants in the

full set, or exclude them in the subset), and finally by train/test split (or total for

the two combined). The train/test splits are different in each run of the experiment.

These statistics are computed from the data used in the first run, and others are

comparable.

Genre Subset Split # chants # notes Mean length (notes)

responsory full train 4 922 676 807 137.5
responsory full test 2 109 290 064 137.5
responsory full total 7 031 966 871 137.5
responsory subset train 1 234 169 642 137.5
responsory subset test 529 72 504 137.1
responsory subset total 1 763 242 146 137.3
antiphon full train 9 706 576 738 59.4
antiphon full test 4 159 248 405 59.7
antiphon full total 13 865 825 143 59.5
antiphon subset train 2 911 190 165 65.3
antiphon subset test 1 248 82 781 66.3
antiphon subset total 4 159 272 946 65.6

a4 Majority baselines
Belowwe show the frequency of the largest classes in each of the datasets. Bold-

faced values correspond to the classification accuracy of the worst-performing
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conditions discussed in themain text. (The frequencies are marginally different

in the five experimental runs; shown are the averages.)

genre dataset kind top mode frequency

responsory full train 8 20.85%
responsory full test 8 21.13%
responsory subset train 1 21.65%
responsory subset test 1 20.19%
antiphon full train 8 28.47%
antiphon full test 8 28.13%
antiphon subset train 1 23.50%
antiphon subset test 1 24.18%

a5 Chant lengths in two genres
Responsories are usually much longer than antiphons. The distribution is esti-

mated from the training datasets without melody variants:

0 50 100 150 200 250 300
chant length (notes)
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a6 Mean lengths of natural units
Natural units have different lengths in responsories and antiphons, as the mean

lengths (in the number of notes) show. section a7 shows the full distribution.

Means are estimated from the training datasets without melody variants.

neume syllable word

antiphon 1.50 1.55 3.98
responsory 2.32 2.96 7.12
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a7 Lengths of natural units
Natural units have different lenghts in responsories and antiphons. Responsories

are moremelismatic: they use more notes per syllable. As a result, a typical word is

also much longer. This is shown in the figure using violin plots, a visualization of

the length distribution using a kernel density estimate. Note that the total area

has no meaning in this plot; we normalized the widths of the violins for better

readability. The distributions are estimated from the training datasets without

melody variants).
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a8 Pitch class profiles
The pitch class profiles used in the profile approach. Shown are data for respon-

sories, estimated from the training data without melody variants.
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a9 Repetition profiles
The repetition profiles that are used in the profile approach. Every bar shows the

average number of repetitions of that note in a chant (seemain text for details).

Shown are data for responsories, estimated from the training datawithoutmelody

variants.
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a10 Melody variants in Cantus.
The top two panels show examples of sets of melody variants: the first 100 notes

of melodies sharing a Cantus id. Different colors correspond to different pitches,
or more precisely, different Volpiano characters after discarding dashes. As a

comparison, the bottom panel shows 100 notes of 20 randommelodies.
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a11 Results with standard deviation
This is essentially the same figure as Figure 4.5 but nowwith themean F1-score

𝜇 and its standard deviation 𝜎 shown as 𝜇±𝜍, computed from five independent

runs of the experiment.
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a12 Main results on subset
Cantus often contains several variants of the samemelody, as shown in supple-

ment a10. As discussed in themain text, this is a difficult issue that for example

also applies to the Essen folk-song collection. We decided to repeat our experi-

ments on a subset of the datawherewe excludedmelody variants. Weheuristically

identifiedmelody variants by randomly picking one chant from all sets of chants

that have the same Cantus id andmode. This resulted in a set of 1763 responsories

and 4159 antiphons. In terms of the number of notes, this meant a 75% and 66%

reduction in data size for responsories and antiphons respectively. This figure

shows the main classification results on this subset of the data. The performance

of all models decreases on this subset, and for responsories more than for an-

tiphons. The drop is greatest for responsories across models. The main result that

only natural units maintain high performance, even on contour representations,

nevertheless stand. Ourmain findings that contours are sufficient and that natural

units work best across representations stand. We do observe some reorderings:

some already high-performing n-grams in antiphons now for example slightly
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overtake word segmentations, although only for pitch and dependent interval

representations. The distributional approach works best for antiphons regardless

of including or excluding chant variants, but for responsories, the distributional

approach drops slightly below the classical approach on the subset (where the

profile approach isworst). These findingsmight be explainedby increased sparsity

in the smaller dataset: natural units in responsories are, after all, longer.
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figure a.1 – Projection on
decision axes. (a) shows the
sorted, nonzero entries of
the the tf–idf vector, and (b)
the corresponding entries
of the decision vector. The
partial projection is shown
in (c). It highlights how
each feature contributes to
the final projections. The
solid red line for mode 7 for
example increases markedly
at the fifth and ninth motifs
(shown with musical scores).
Those motifs partly explain
why the chant is classified to
mode 7. The same chant as
in Figure 4.7 is shown.
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a13 Feature importance
Here we discuss the attributionmethod discussed in section 4.4 in more detail.

We restrict the discussion to the syllable segmentation in responsories. Besides

the svm-feature importance discussed in themain text, we also discuss using raw

tf–idf scores as a measure of feature importance. For each of these twomeasures,

we distinguish two variants: a class-specific and a general one. The class-specific

variant measures how important a feature is for determining whether a chant

belongs to one specific mode. The general variant measures the importance for

classifying to any class.

class-specific svm-importance This is themeasure discussed in themain text, but

tounderstand it better, it is instructive togo through theprojectionof a tf–idf chant

vector on a decision axis in more detail. Let u(m) = (u1,… ,un) be the decision
vector of modem, orthogonal to the decision boundary, and let x = (x1,… , xn) be
the tf–idf feature vector of some chant. If u is normalized, the projection is given

by the inner product uTx = u1x1 + u2x2 +⋯+ unxn. In practice, there are only a

few terms in this sum as terms for which xi is zero do not contribute to the total.

In a sparse tf–idf vector, there will be many such terms. In Figure A.1 we visually

illustrate this to highlight which motifs contribute to the projection—and the

eventual classification. Concretely, if the k-the entry u(m)
k

of decision axis u(m) has

a large value, the k-th motif contributes to classifying a chant to mode m. The

class-wise svm-importance of motif k for modem is:

svm-importance
m
(k) = u(m)

k
(A.1)
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figure a.2 – Top most im-
portant motifs according
to different general im-
portance measures. Sin-
gle notes stand out in the
pitch representation (a),
suggesting mostly scalar
information is encoded,
whereas the interval and
contour representation (b,
c) emphasise larger motifs,
encoding more melodic in-
formation. Tf-idf importance
seems to rank common,
short motifs higher, whereas
svm importance appear to
favour motifs that discrimi-
nate modes. Lighter colours
indicate more important
features.
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general svm-importance Importance for any particular class indicates general

importance, and so the general measure is essentially an average of importance

scores. However, it takes into account counter-evidence. If coordinate k of a

decision vector is strongly negative, an occurrence of motif k can be seen as strong

counter-evidence for modem. The class-specific measure does not consider k to

be important for modem, but themotif should have general importance. To ensure

that both strong evidence and strong counter-evidence indicate importance, the

general variant takes the mean of the absolute values:

svm-importance(k) = average(|u(1)
k
|,… , |u(8)

k
|). (A.2)

class-specific tf–idf importance Next, we experimented with using tf–idf scores

as measures of feature importance. To that end we simply computed average

scores across all chants of a particular mode:

tf–idf-importance
m
(k) = average(xk : chant x has modem) (A.3)

general tf–idf importance The general variant is identical except that it now

averages over all chants:

tf–idf-importance(k) = average(xk : x is any chant) (A.4)

comparison of general importance measures First, Figure A.2 shows the top-

ranking items according to the general tf–idf and svm importance measures. It

clearly stands out that the tf–idf scores emphasize short, relatively commonmotifs

acrossmodes, whereas svm importance emphasizes largermotifs. This is also why

witness coloring using the svm scores seemsmore informative than using tf–idf

scores. Despite the differences in the top-rankingmotifs, there is some correlation

between the two importance measures. This can be seen in Figure A.3 which plots

the svm-rankings against the tf-idf rankings.
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Finally, we assessed how classification performance is impacted by only using

the top-n features according to each of the importancemeasures. Figure A.4 shows

that pruning all except the top n features results inmuch higher performance than

a baseline that uses n randomly chosen features. The two importancemeasures

behave similarly in this pruning experiment, but for contour and interval repre-

sentations, the svm importance seems to produce better rankings than the tf–idf

importance. The figure also suggests that the classifier reliesmuchmore on the top

features, than it does for interval and contour representations, as the performance

increases very rapidly for the pitch representation when increasing n.
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figure a.3 – Rank correlation of general feature importance measures. We compare tf–idf
and svm feature importance by looking at their rank correlation in three representations.
There seems to be some consistency in how these measures rank different motifs.
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figure a.4 – Pruned model performance. We compare measures of feature importance
by evaluating the classifier when eliminating all but the top-n features according to an
importance measure. Pruning the model based on the SVM importance measures seems
to impact performance less than using tf-id for the contour representation. Although the
differences are small in terms of model performance, the top-ranking motifs are noticeably
different. Data are for responsories using a syllable segmentation, thick lines are averages
over the five runs.
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a14 Witness coloring antiphons
We show six antiphons, three frommode 1 and three frommode 3. The coloring

showswhichmotifs (in interval representation) contribute to the classification.

The figure illustrates that the final sections, called differentiae, play an important

role. Not only are differentiae indicative of mode, but these motifs are also longer

than syllables in antiphons.
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b1 Random walk baseline
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We compared the principal components of phrases to a random walk baseline

that was intended to be fairly similar to actual phrase contours. First, we draw the

length (number of notes) K of the randomwalk from a Poisson distribution with



mean𝜆 = 12 (truncatedbelow3). Thevalue 12was chosen soas to approximate the

length distribution of phrases. Thenwedrawan initial pitch x0 uniformly between

60 and 85 (in MIDI pitch space). Next, at every step k we draw the size of a step rk
(the interval) from a Binomial distribution with parameters n = 10 and p = 0.5,
shifted to have mean 0, and let the next pitch be xk = xk−1 + rk . We constrain

the step sizes to lie between−12 and+12, meaning that jumps cannot exceed an

octave. This results in small, approximately normally distributed step sizes. This

process yields a sequence of pitches x0,… , xK−1. As usual, we interpolate a step

function through these pitches and sample N = 100 equally spaced pitches to

obtain a random contour. In the figure above we useN = 50 for readability.
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Here we vary the average length 𝜆 of the random walk baseline. This affects

the number of notes K , but we still have N = 100 throughout. We generate

10,000 random contours, and compute the covariancematrices (A). The longer the

melodies (larger K), the more the covariance matrix starts to resemble a Toeplitz

matrix, which has constant values along each of its diagonals. As an ad-hoc

measure of Toeplitzness, we measure how much every entry of the covariance

matrix differs from themean value on that diagonal. For a Toeplitz matrix, that

should be zero everywhere: all diagonals are constant, so every entry also equals

the mean of that diagonal. Column (B) makes clear that the covariance matrix

differs from a Toeplitz matrix mostly in the upper left corner, which contains

the covariance in the first timesteps. All this is also reflected in the principal

components (C).
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b2 Analyses of other datasets
In this supplementwevisualize theprincipal componentsofmelodicmaterial from

motifs to songs in different traditions. We include a subset here, please refer to the

original supplements for the rest. That can be found on github.com/bacor/cosine-

contours/blob/master/documents/supplements.pdf Here we show the following

for every dataset:

a. The first four principal components. The first one is usually a flat line (gray),

the second a descending shape (blue), the third a convex shape (orange), and

the fourth one undulating (green). The corresponding cosines are shown as

thin dashed lines in the same colors.

b. The length distribution of the melodic material, where length is measured in

quarter notes. For Gregorian chant we assume all notes are quarter notes.

c. The covariance matrix.

d. A scatterplot showing the representations of 2000 contours in 2d cosine con-

tour space.

e. The reconstruction error using the discrete cosine transform compared to a

principal component analysis.

It is clear that the cosine approximation is most accurate at the phrase level. For

very short melodic fragments (such as neumes or syllables), you see clear effects

of the typical number of notes. For example, neumes often have only 2 notes,

meaning there is a jump in the middle of the contour. You can see this in the

principal components, but also in the covariance matrix. Such effects are weaker,

but sometimes still visible at the phrase level: German folksongs apparently often

have durations of 8 quarter notes, with jumps in themiddle, or after 2 of 6 quarter

notes. For complete songs, finally, the principal components are often difficult

to interpret. Only for a very large number of songs (such as when combining

all chants in GregoBase) does a pattern reminiscent of the cosines emerge. But

for very small datasets, such as those in the Densmore collection, the principal

components are very irregular.
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Motifs
All motifs come fromGregorian chant (responsories from CantusCorpus).
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Phrases
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Antiphons (phrases) Antiphons (random segments)

0 20 40 60 80 100
time steps

0.1

0.0

0.1

P
itc

h

5099 contoursA. Principal components

0 10 20 30
length (quarters)

0.00

0.05

0.10

re
l. 

fre
q.

B. Melody length

0 100
time step

0

100

tim
e 

st
ep

C. Covariance

25 0 25
c1

20

0

20

c 2

D. Projections

0 20 40
dimension

0

2

4

M
S

E

E. Reconstr. error

PCA
DCT

0 20 40 60 80 100
time steps

0.1

0.0

0.1

P
itc

h

3523 contoursA. Principal components

0 10 20 30
length (quarters)

0.00

0.05

0.10

re
l. 

fre
q.

B. Melody length

0 100
time step

0

100

tim
e 

st
ep

C. Covariance

25 0 25
c1

20

0

20

c 2

D. Projections

0 20 40
dimension

0

2

4

M
S

E

E. Reconstr. error

PCA
DCT

Supplements for chapter 6: Cosine Contours 169



Songs
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All chants in Gregobase Lakota
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b3 Mathematical background
In this supplement we provide somemore mathematical background to illustrate

whywe observe cosine-shaped principal components. The aim is tomake some of

the key points a bit more accessible; we refer to Jolliffe (2002) for a detailed discus-

sion of principal component analysis, to Gray (2006) for a rigorous treatment of

Toeplitz matrices and their limiting behaviour, and to Rao and Yip (1990) for the

discrete cosine transform.

notation WewriteN for the length of a contour, or the number of steps in a ran-

domwalk, andM denotes the number of contours. Consider a dataset {x1,… ,xM}
of points xm = (xm1,… , xMN) in ℝN . We denote the sample mean by x̄ and the

centered data points by x̂m:

x̄ = 1
M

M

∑
m=1

xm and ̂xm = xm − x̄, (B.1)

and both of course live inℝN . AnM×Nmatrix X has entries (X)m,n = xmn, and for

N ×Nmatrices we generally index rows by n and columns by k.

Principal components
maximize projected variance The goal of a principal component analysis is to

find a subspace of lower dimensionality D < N that maximizes the variance of

the data when it is projected on this subspace. First, we project the data on a

one-dimensional subspace spanned by the unit vector u1 ∈ ℝN . You can think of

the projection of xn as a point in theN-dimensional ambient space, but we rather

treat it as the scalar uT
1 xn: the coordinate in the one-dimensional subspace. The

projected data then has mean uT
1 ̄x and variance

1
M

M

∑
m=1

(uT
1 xm − uT

1 x̄)
2 = uT

1 Su1, (B.2)

where S is theN × n covariance matrix given by

S = 1
M

M

∑
m=1

xm − x̄)(xm − x̄)T (B.3)

Wewant to chooseu1 in such away that itmaximizes the projected varianceuT
1 Su1.

It can be shown (see e.g. Jolliffe, 2002), using a Lagrangemultiplier, that under

the constraint ‖u1‖ = 1, the projected variance is maximized when

Su1 = 𝜆1u1. (B.4)

Left-multiplying by uT
1 , and using that u

T
1 u1 = 1, this is the case when

uT
1 Su1 = 𝜆1. (B.5)

Equation (B.4) shows thatu1mustbe an eigenvector of the covariancematrixS cor-

responding to eigenvalue 𝜆1, which is exactly the projected variance according to

(B.5). The first principal component, in short, is the eigenvector of the covariance

matrix corresponding to the largest eigenvalue. The argument can be extended

inductively to identify all principal components as eigenvectors of the covariance

matrix, ordered according to their eigenvalues.
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minimize reconstruction error It should be noted that one can also motivate

principal components in another way. Consider a dataset {xm ∈ ℝN}m as before,

and a set of basis vectors {u1,… , vN} forℝN with norm 1. As before, the projection

of x on the un is cn = uT
nx, and so we can represent x as a coordinate vector

(c0,… , cN). Now suppose we only use the firstD coordinates to represent x, so we

get the truncated representation:

̃x =
D

∑
i=1

ciui. (B.6)

Nowmeasure the reconstruction error as

mse = 1
M

M

∑
m=1

(x− x̃)2 (B.7)

We ask: how should we choose the basis vectors so that the reconstruction er-

ror mse is minimized? The answer is the same: as the eigenvectors, ranked in

descending order (Rao & Yip, 1990).

Toeplitz and circulant matrices
Toeplitz matrices are matrices were every diagonal has the same value. They are

usually indexed as follows:

T =

⎡
⎢
⎢
⎢
⎢
⎣

t0 t−1 t−2 … t−(N−1)
t1 t0 t−1

t2 t1 t0 ⋮
⋮ ⋱

tN−1 … t0

⎤
⎥
⎥
⎥
⎥
⎦

(B.8)

That means that Ti,j = tj−i. Before we discuss Toeplitz matrices further, let’s focus

on the special subset of circulant matrices. A circulant matrix is a Toeplitz matrix

where every row equals the previous row, rotated one step to the right:

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c0 c1 c2 … cN−1

cN−1 c0 c1 cN−2

cN−2 cN−1 c0
⋮ ⋱ ⋮

c0 c1
c1 … cN−1 c0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.9)

It is convenient to start indexing at 0 rather than 1 so that we can write Cn,k =
ck−n mod N . We will also read the subscripts periodically: for example, cN+3 = c3.

For circulantmatrices,matrixmultiplication takes the formof a circular convolution:

if y = Cx, we have

yn =
N−1

∑
k=0

ck−nxk . (B.10)

eigenvectors of circulant matrices Suprisingly, all circulant matrices have the

same eigenvectors. These eigenvectors consist of (N-th) roots of unity: the complex
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figure b.1 – TheN-th roots
of unity forN = 5 are points
on the complex unit circle.
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numbers z satisfying zN = 1. The first complex root of unity is

𝜔 = e
2𝜋i
N , (B.11)

and its powers𝜔k are other roots of unity, since (𝜔k)N = (𝜔N)k = 1. The numbers

𝜔0,… ,𝜔N−1 can be visualized as evenly spaced points on the unit circle in the

complex plane (see Figure B.1). Importantly, these numbers (like the coefficients

ck) are periodical: 𝜔N+k = 𝜔N ⋅ 𝜔k = 𝜔k .

This property allows us to show that theN eigenvectors of a circulant matrix

are

ωn = (𝜔n⋅0,… ,𝜔n⋅(N−1)), , (B.12)

for n = 0,… ,N − 1. You can verify this directly when n = 0, since ω0 is then

an an all-ones vector, but let’s consider the general case. We have to show that

Cωn = 𝜆nωn for some constant 𝜆n. Using (B.10), we can show that k’the entry of

the left hand side indeed equals 𝜆n𝜔nk :

(Cωn)k =
N−1

∑
j=0

cj−k ⋅ 𝜔n⋅j (B.13)

= 𝜔nk ⋅
N−1

∑
j=0

cj−k ⋅ 𝜔n(j−k) (B.14)

= 𝜔nk ⋅
N−1

∑
j′=0

cj′ ⋅ 𝜔n⋅j′

⏟⎵⎵⏟⎵⎵⏟
𝜆n

. (B.15)

Here we first multiplied by𝜔−nk/𝜔−nk to align the indices of the coefficients and

the powers. Then we used the periodicity of the roots of unity to reorder the sum,

so it no longer depends on k andmust equal the eigenvalue 𝜆n. The general case is
similar.
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Summarizing, every N × N circulant matrix C has the same N eigenvectors

ω0,… ,ωn, with (different) corresponding eigenvalues:

𝜆n = c0𝜔0 + c1𝜔n… cN−1𝜔n(N−1) (B.16)

=
N−1

∑
j=0

cje
2𝜋i⋅nj

N , (B.17)

for n = 0,… ,N − 1. From the second expression one sees that the eigenvalues

(𝜆0,… , 𝜆N−1) are the discrete Fourier transform of (c0,… , cN−1).

real circulant matrices In the scenario we are interested in, the matrix C is real

and symmetric, and suchmatrices have real eigenvalues and eigenvectors. To see

that the eigenvalues are real, first note that a symmetric circulant matrix satisfies

the additional constraint ck = cN−k . Also observe that𝜔k and𝜔N−k = 𝜔−k are each

others mirror image in the real axis (see Figure B.1). They have the same real part,

Re(𝜔k) = cos(2𝜋k
N

), (B.18)

and when adding them, the complex part cancels out: 𝜔k +𝜔−k lies on the real

axis, at the point 2Re(𝜔k). This means that

ck𝜔k + cN−k𝜔N−k = 2ckRe(𝜔k) (B.19)

is a real number. From (B.16) we see that the eigenvalues 𝜆n consist of many such

sums: all complex parts cancel out and the eigenvalues are real1

1 The expression for the
eigenvalues is slightly differ-
ent depending on whetherN
is odd or even.

Nowwe can also choose real eigenvectors: the real part ofωn. After all, ifωn is

an eigenvector for the real eigenvalue 𝜆n, so are ω−n and vn = 1/2(ωn +ω−n). By
the same argument as before, equations (B.19) and (B.18) show that this is a real

eigenvector:

vn = (1, cos𝜃, … , cosN𝜃), 𝜃 = 2𝜋n
N

. (B.20)

This is a discrete cosine function consisting ofN points, where higher n implies in

higher frequencies. This is illustrated in Figure B.2.

toeplitz is asymptotically circulant The reason circulantmatrices are interesting

here, is that Toeplitz matrices can be shown to be asymptotically equivalent to

circulant matrices, and that eigenvalues are preserved. We refer to Gray (2006)

for a detailed discussion of that result. What this implies is that the eigenvectors

of large Toeplitz matrices are well approximated by those of circulant matrices:

sinusoidal functions. That in turnmeans that approximately Toeplitz covariance

matrices (which are real and symmetric) will have cosine-shaped eigenvectors.

PCs of random processes
Wewant to end by discussing two examples where Toeplitz covariance structures

arise, and we thus would expect cosine eigenvectors, at least asymptotically.

weakly stationary process Toeplitz matrices arise in the study of weakly station-

ary processes. These are random processes where the mean is constant over time,

andwhere the covariance does not change by shifts in time: it only depends on
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figure b.2 – The eigenvec-
tors of a symmetric, circulant
matrix are discrete cosine
functions with different
periods.
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figure b.3 – The autocovari-
ance matrix for an autore-
gressive process ar(1) for two
values of𝜌. When𝜌 → 1 it
approximates the discrete
cosine transform.
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the distance between two time steps. That is, when Cov(xi, xj) = K(j − i) is some

function of j − i, and thus results in a Toeplitz covariance matrix.

One example of such a process is a first order autoregressive process ar(1),
where

xn = 𝜌xn−1 + rn, (B.21)

where rn is a random step with mean zero and variance 𝜎2, and we assume x0 = 0.

It can be shown that this process hasmean E[xn] = 0 and variance Var[xt] = 1/1−𝜌2

if |𝜌| < 1. In that case, the covariance is

Cov(xi, xj) =
𝜎2

1− 𝜌2
⋅ 𝜌|j−i|. (B.22)

This is actually one of the few cases where an analytic expression for the eigenvec-

tors is known, although it is rather complex (Rao & Yip, 1990; Ray & Driver, 1970).

Interestingly, one can use this to show that for ar(1) processes, the discrete co-
sine transform dct-ii becomes equivalent to the ‘principal component transform’

(Karhunen-Loève transform) as 𝜌 → 1 (Rao & Yip, 1990, section 3.3.2).

high-dimensional random walk In the limit 𝜌 → 1 one obtains a randomwalk.

Antognini and Sohl-Dickstein (2018) analyse the principal components of high-

dimensional randomwalks. We briefly summarise their results. Consider a ran-

domwalk inℝM withN steps given by

xn = xn−1 + rn (B.23)

where rn is a random step drawn from a probability distribution with zero mean

and a finite, normalized covariance matrix. We start from x0 = 0 inℝM .

We can express all this as matrix multiplications. Collect the points xn and

steps rn as the rows of theN ×Mmatrices X and R respectively. LetW be aN ×N

matrix with 1’s on the diagonal,−1’s on the subdiagonal and zeros elsewhere. This

implements the walkingmechanism in the sense thatWX = R, hence

X =W−1R. (B.24)

To compute the covariancematrix Swe need the centered datapoints x̂n = xn− x̄n.

The centering operation be conveniently expressed asmultiplication by theN×N

centering matrix C = I− 1
M J, where J is the all-ones matrix. This gives

X̂ = CX = CW−1R (B.25)

and allowsus to express the covariancematrix as S = 1
N X̂

TX̂. Instead of finding the

eigenvectors of X̂TX̂, we can look for those of X̂X̂T . After all, if u is an eigenvector

for ̂XTX̂with nonzero eigenvalue 𝜆, then v = X̂u is the corresponding eigenvector

for X̂X̂T .

Putting all this together, Antognini and Sohl-Dickstein (2018) look for the eigen-

values and eigenvectors of

X̂X̂T = CW−1RRTW−TC (B.26)

where we used symmetry of C. Note that this matrix contains the covariance

between timesteps, rather than dimensions. They observe that in the limit of

infinte dimensionalityM → ∞, we have that RRT tends to the N × N identity

176 Supplement b



matrix. This allows us to simplify (B.26) to

X̂X̂T = CW−1W−TC. (B.27)

SinceW is a so-called banded Toeplitzmatrix, andC is circulant, thewhole expres-

sion can be shown to be asymptotically equivalent to a circulant matrix, meaning

that the eigenvectors are cosines. This analysis can be related tomelodic contours,

whenwe consider a collection ofM contours of lengthN as one high-dimensional

walk throughℝM .
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c1 iemp Cuban Salsa and Son
Here we show the iemp Cuban Salsa and Son data in more detail.

individual instruments vs. surface First, we compare the individual instruments

versus the surface rhythm. The former considers the intervals between onsets of a

single instrument and then concatenates the intervals for all instruments. The

latter, surface rhythm, is obtained by computing intervals between successive

onsets of any two instruments. Onsets fewer than 25ms apart are considered to

be simultaneous and ignored (cf. Roeske et al., 2020). The two are quite different,

which is surprising given that Roeske et al. (2020) write that overall, “the two

types of extraction (separate for each instrument and simultaneous for combined

‘surface’ rhythm) produced similar results”.
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different instruments Second, we compare different instruments within Song

1. Different instruments clearly play different rhythms, but there is also a lot of

overlap. The triangle plots also appear to show timing: the mode around 1 : 1 : 1
for the conga, for example, has a peculiar triangular shape. And the Cajon is very

reliably avoiding the 1 : 2 : 2 ratios.

111

112

121

122

211
212

221

bass

111

112

121

122

211
212

221

bell

111

112

121

122

211
212

221

bongos

111

112

121

122

211
212

221

cajon

111

112

121

122

211
212

221

clave

111

112

121

122

211
212

221

conga

111

112

121

122

211
212

221

guitar

111

112

121

122

211
212

221

tres

111

112

121

122

211
212

221

trumpet

180 Supplement c



different songs Third,we compare the five different songs. Most of the rhythmic

categories are found in all songs, but song 2 appears to be more clearly timed and

song 3 is a bit slower.
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c2 Measuring isochrony
In this section, I give a formal definition of the proposed measure of isochrony,

first for motifs of length n = 2 and then for general lengths. It will be convenient

to define isochrony in terms of its opposite, which I will call anisochrony.

length 2 Take a sequence of inter-onset intervals i1,… , iK , and group them into

normalizedmotifs of length 2 (normalized 2-grams):

rk = ( ik
ik + ik+1

, ik+1

ik + ik+1
). (C.1)

By normalizing, we capture the duration of each interval relative to the total dura-

tion of the motif. The sequence of intervals (1, 2,4, 3, 3) for example gives motifs

(1/3, 2/3), (1/3, 2/3), (4/7, 3/7) and (1/2, 1/2).
One can think about the nPVI as measuring the average “irregularity” of such

motifs. Or, to propose a technical term, the anisochrony, from Greek ánisos “un-

equal”: it really measures how distant a motif (a, b) is from the isochronousmo-

tif (1/2, 1/2); how not-isochronous a motif is. We canmeasure the distance from

isochrony as |a− 1/2|+|b− 1/2|. For example, the anisochrony of themotif (0.6,0.4)
is 0.2, precisely the adjustments needed to turn the motif into an isochronous

rhythm.
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More formally, we define the anisochrony of a motif rk = (a, b) to be its distance
to the isochronousmotif (1/2, 1/2):

anisochrony((a, b)) : = |a− 1
2
| + |b− 1

2
| = |a− b| (C.2)

To see that the second equality holds, note that b = 1− a, so that the left-hand

side equals |a − 1/2| + |1/2 − (1 − a)| = 2|a − 1/2| = |a − (1 − a)| = |a − b|. We

define the nPVI as 200 times the average anisochrony. To see that this is exactly

equivalent to the conventional definition of nPVI, we fill in the definitions of a and

b in terms of intervals:

nPVI = 200× 1
K − 1

K−1

∑
k=1

|||
ik

ik + ik+1

− ik+1

ik + ik+1

||| (C.3)

= 100
1/2 × 1

K − 1

K−1

∑
k=1

|||
ik − ik+1

ik + ik+1

||| (C.4)

= 100
K − 1

K−1

∑
k=1

|||
ik − ik+1

1/2(ik + ik+1)
||| . (C.5)

And this latter form is the usual definition.

longer motifs The more general definition suggests a natural generalization

to longer motifs. In the rhythm triangle, for example, we find 3-gram motifs

(a, b, c), and their anisochrony would be their distance to the isochronous triplet

(1/3, 1/3, 1/3) at the center of the triangle. And this can easily be extended to even

longer motifs of arbitrary length n. To do so, observe that we have implicitly used

the L1 norm to define distances. Essentially, for a normalized motif r = (r1,… , rn),
we defined

anisochrony(r) = Cn ⋅ ‖r − I‖1, I = (1/n,… , 1/n) (C.6)

where I is the isochronousmotif and Cn should be a normalizing constant such

that the anisochrony falls between 0 and 1. Now note that the motifs furthest

away from I are themotifs at the corners of the space: those with n− 1 zeros and a

single one. Their distance to I is

||1−
1
n
|| + (n− 1) ⋅ ||0−

1
n
|| =

n− 1
n

+ n− 1
n

= 2(n− 1)
n

. (C.7)

And so we choose Cn = n/(2(n− 1)):

anisochrony(r) = n

2(n− 1)
n

∑
k=1

||rk −
1
n
|| (C.8)

When n = 2 all this boils down to the exact same definition as before. And indeed

to wrap things up, we let isochrony(r) = 1− anisochrony(r), which takes values

between 0 (maximally non-isochronous) and 1 (perfectly isochronous). For a

finishing touch, let’s turn the definition around and define the (n-gram) isochrony

of r as

isochrony(r) = 1−𝛼(r), (C.9)

which takes values between 0 (maximally non-isochronous) and 1 (perfectly

isochronous).
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and beyond? The core idea of all this is simple: you measure distances from a

motif to some reference motif like the isochronous one. But you can use other

reference points. All small-integer ratios, for example, and if you then take the

minimum over all those distances, we get the irrationality of a motif: how far it is

from the closest small-integer ratio motif:
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d1 Experimental setup
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We represent all melodic fragments, be it phrases or random segments (a), as
sequences of 50 pitches, sampled from step curves interpolating the melodies (b).
Then we standardize the pitch in 5 ways (c): not at all, by centering, normalizing,

tonicizing (not possible for synthetic contours), and finalizing. Moreover, we

compute a 50-dimensional cosine contour representation (d, illustrated in 2d),

and two relative representations (e): an interval representation and a smoothed

version thereof. Finally, we compute pairwise distances using Euclidean distance,

dtw dissimilarity or (Euclidean) distance in a 10-dimensional umap projection.
It is worth noting that when we compute dtw similarity on (smooth) interval



representations (i.e., on the derivative of the time series) we are effectively using

derivative dynamic time warping (Keogh & Pazzani, 2001). This variant of dtwwas

proposed tomakedtwmore robust to small changes in the time series, and usually

results in better alignments. We do not use dtw for cosine contours, as it consists

of discrete cosine transform coefficients, which do not form a time series.

d2 Clusterability of contours
Hereweshowthep-valuesof theHartigans’dip test on the setofpairwisedistances

between contours, using Euclidean, dtw and umap distance. The color coding
is the same as in Figure 8.4 and is yellow-green for significant results, and gray

for insignificant results, using a significance threshold of 0.05. Only with umap
distance does the test correctly provide evidence formultimodality in the clustered

dataset (d). Note, also, that the interval representation finds more evidence for

multimodality across all four datasets—even in the uniform, synthetic dataset (c).
But since that dataset is synthesized to contain no clusters, we treat this as a false

positive.
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unique contours only We repeated the analyses on samples of unique contours,

and the overall pattern remains the same.
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lower dimensionality We repeated the analyses on lower-dimensional contour

representations of 10 rather than 50 pitches, by subsampling the 50-dimensional

contours, or in the case of cosine contours, taking only the first 10 coefficients.

Again, the overall pattern remains the same:
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per dataset The results for ‘phrases’ above all use the aggregate, cross-cultural

dataset. Here we show the results for three datasets separately. Again, the overall

pattern remains the same.
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d3 Length-wise analysis
The length of a phrase may affect its shape, and perhaps we don’t find clusters

because we aggregate all lengths. We thus repeat the analyses, but now for every

length (measured in the number of notes) separately. First, this it the distribution

of lengths in the datasets:
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euclidean distance Next, we show the same p-values as before, but now the

length is shown vertically, and the representation horizontally. With Euclidean

distance, we only see evidence appearing for some clusters of very short contours

of 4–5 notes. This is not surprising: the space of possibilities is small, and there

are only a few such contours. Indeed, even uniform synthetic contours of length

four can appear clustered. Note that many of the synthetically clustered contours

still avoid detection.
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umap-distance With umap distance, we see more evidence for clustering, but

again primarily for shorter motifs, and in particular with the normalized pitch

representation. There is also some clustering for longer phrases. But for the most

common phrases of average length, that evidence is largely absent and certainly

not nearly as strong as the evidence for clustering in the synthetic, clustered

dataset.
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C. Synthetic contours
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d4 Average shapes

21 11 12

231 121 132

312 212 213

3412 2312 2413

3142 2132 2143

Descencing

Desc-horiz.

Horiz.-desc

Horizontal

Convex

Concave

Ascending

Asc-horiz.

Horiz.-asc

HanErk

A. Adams' typology B. Huron's typology

C. k-means typology: centroids for various k
k= 5k= 4k= 3

Datasets:

We show the average of all contourswith a certain type for Adams’ (a) andHuron’s
typology (b), for two datasets: Erk (blue) and Han (orange). The theoretical shape

is shown in the background (see Figure 8.1). For the k-means typology (c) we show

the centroids for k = 3, 4 and 5 clusters. Similarly shaped centroids are similarly

colored across values of k. The shapes in smaller typologies (k-means or Huron’s)

are more recognizable than those in Adam’s typology. Also note the characteristic

flattening at the beginning and end of each contour, caused by every first and final

note necessarily being flat.
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e1 Textual structure of Summa
The piece consists of 16 sections, marked by rehearsal numbers, of each 3 bars.

Measures in a section contain 7, 9 and 7 syllables respectively, and use different

voices: sa, then satb and finally tb. The next sectionmirrors this structure. Sylla-

bles are distributed across the bars following this scheme, even if this means that

a bar line falls in the middle of a word.



Section Bar Voices Syllables Text

1 1 sa 7 Cre- do in u- num de- um,
2 satb 9 Pa- trem o- mni- po- ten- tem, fa- cto-
3 tb 7 rem coe- li et ter- rae, vi-

2 4 tb 7 si- bi- li- um o- mni- um,
5 satb 9 et in- vi- si- bi- li- um, et in
6 sa 7 u- num Do- mi- num Je- sum

3 7 sa 7 Chri- stum, Fi- li- um De- i
8 satb 9 u- ni- ge- ni- tum, et ex Pa- tre
9 tb 7 na- tum an- te o- mni- a

4 10 tb 7 sae- cu- la. De- um de De-
11 satb 9 o, lu- men de lu- mi- ne, De- um
12 sa 7 ve- rum de De- o ve- ro,

5 13 sa 7 ge- ni- tum, non fa- ctum, con-
14 satb 9 sub- stan- ti- a- lem Pa- tri: per quem
15 tb 7 o- mni- a fac- ta sunt. Qui

6 16 tb 7 prop- ter nos ho- mi- nes, et
17 satb 9 pro- pter no- stram sa- lu- tem de- scen-
18 sa 7 dit de coe- lis. Et in- car-

7 19 sa 7 na- tus est de Spi- ri- tu
20 satb 9 San- cto ex Ma- ri- a Vir- gi- ne:
21 tb 7 Et ho- mo fa- ctus est. Cru-

8 22 tb 7 ci- fi- xus e- ti- am pro
23 satb 9 no- bis sub Pon- ti- o Pi- la- to
24 sa 7 pas- sus et se- pul- tus est.

9 25 sa 7 Et re- sur- re- xit ter- ti-
26 satb 9 a di- e, se- cun- dum scri- ptu- ras.
27 tb 7 Et a- scen- dit in coe- lum,

10 28 tb 7 se- det ad dex- te- ram Pa-
29 satb 9 tris. Et i- te- rum ven- tu- rus est
30 sa 7 cum glo- ri- a, ju- di- ca-

11 31 sa 7 re vi- vos et mor- tu- os,
32 satb 9 cu- jus re- gni non e- rit fi- nis.
33 tb 7 Et in Spi- ri- tum San- ctum,

12 34 tb 7 Do- mi- num, et vi- vi- fi-
35 satb 9 can- tem: qui ex Pa- tre Fi- li- o-
36 sa 7 que pro- ce- dit. Qui cum Pa-

13 37 sa 7 tre et Fi- li- o si- mul
38 satb 9 ad- o- ra- tur, et con- glo- ri- fi-
39 tb 7 ca- tur, qui lo- cu- tus est

14 40 tb 7 per Pro- phe- tas. Et u- nam
41 satb 9 san- ctam ca- tho- li- cam et a- po-
42 sa 7 sto- li- cam Ec- cle- si- am.

15 43 sa 7 Con- fi- te- or u- num ba-
44 satb 9 pti- sma in re- mis- si- o- nem pec-
45 tb 7 ca- to- rum. Et ex- spe- cto

16 46 tb 7 re- sur- re- cti- o- nem mor-
47 satb 9 tu- o- rum, et vi- tam ven- tu- ri
48 sa 4 sae- cu- li. A-
49 satb 1 men
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e2 Approximate patterns
The first plot shows the pattern of repetitions of themelodic voices. All repetitions

of the alto (A) and bass (B) are plotted above one another. Wemanually identified

an approximate pattern of notes and ornaments (shown in the background) that

best matches all of the repetitions. In other words, it minimizes the number of

deviations. For the t-voices (next two plots), this turned out to be a crucial step in

understanding their construction.
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The pattern of repetitions of the tintinnabuli voices is shown in a similar way

as for the melodic voices. The patterns are now however twice as long.
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e3 Tenor and soprano ornaments
The RepeatPrevious process generates the ornaments for the soprano (a) and tenor
(b) by repeating the previous note if this is not equal to the next note. As explained
in themain text, this process has several parameters that constrain the range of

the ornaments. For the soprano the ornaments have to lie between b = E4 and

B = E5, while the next note has to fall below C = E5. For the tenor, we use b = E3,

B = E4 and C = B3.

e4 Alto and bass ornaments
The TailRotatedPatternProcess process generates the ornaments for the alto (a)
and bass (b) parts. The black lines show the respective melodies, and ornaments

are indicated by colored plusses. It essentially repeats a 16-note pattern of orna-

mentation but rotates the tail every time to keep the ornamentation in sync with

themelody (see main text for details).
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e5 Implementation: code sample
Fragment of the implementation. Using tintinnabulipy, all notes and ornaments
of the alto and soprano can be constructed in just a few lines of code. The tenor
and bass are similar. The majority of the remaining code is needed to turn this
into an actual score (i.e., a musicxml file).

# Define the melodic spaces

M = MelodicSpace(MinorScale('E4'))

T = TintinnabuliSpace(Chord(['E4', 'G4', 'B4']))

# Construct the alto melody and ornaments

alto_pattern = glue(M.mode2(6), M.mode4(6), M.mode1(2), M.mode3(2))[:-1]

repetitions = [rotate_tail(alto_pattern, i) for i in range(16)]

alto = concatenate(*repetitions)

ornament_pattern = [None, 'G3', None, None, None, 'B3', None, 'E3',

None, None, 'B3', None, None, None, None, None]

alto_orn_process = TailRotatedPatternProcess(T, alto_pattern)

alto_ornaments = alto_process(alto, t0=False)

# Construct the soprano melody and ornaments

soprano = StepProcess(T, position=2)(alto)

sop_orn_process = RepeatPreviousProcess(T, ['E4', 'E5'], [None, 'E5'])

sop_ornaments = sop_orn_process(soprano, t0=soprano[0])

e6 Ending of Summa
The ending of Summa (A) is more freely composed than the rest of the piece and

deviates from the patterns observed before. The alto finishes the last repetition of

the basic pattern in a four-notemelisma, to end on the tonic. Meanwhile, the bass

and tenor hold an open fifth on ’Amen’. The reconstruction (B) of course cannot

accurately reproduce these measures. We treat the errors as ornament insertions

and count 2 extra insertions for all voices.
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Summary
Measuring musics
Notes on modes, motifs, and melodies

Humans are a musical species: we sing, dance, play, or listen, no matter where we

are from. To understand why, musicologists have long studied the rich diversity

of musical traditions—ormusics—found around the world. One can, for example,

comparemusics to identify properties that manymusical traditions share or prop-

erties that very few share. But such questions require you to somehowmeasure the

properties of interest. And that ideamotivates this dissertation: can we develop

computational methods tomeasure musics, so that we might compare them? A

series of studies, interspersed with lighter interludes, discusses ways to measure

modes in plainchant, inventories of melodic and rhythmicmotifs, and the shapes

ofmelodies, ending with an intricate rarity: music by Arvo Pärt.

This dissertation primarily analyzes sheet music from a range of musical tra-

ditions. In the Catafolk project, we collect a sizeable cross-cultural corpus by

bundling several existing corpora, mainly containing German, Chinese, and Na-

tive American songs. We also present two corpora ofWestern plainchant (Cantus

Corpus and GregoBase Corpus) and a Python package to parse the plainchant

formats. This leads to a series of studies of plainchant. We confirm themelodic

arch hypothesis—that phrases tend to be arch-shaped—in plainchant, analyze

the predictability of a particular musical connection, and train a small recurrent

neural languagemodel to compose new chant artificially.

The centerpiece, however, is a study in which wemeasure themain organiza-

tional structure of plainchant: the eight modes. Modes are melody types that lie

somewhere between abstract scales and concrete melodies. We compare three

ways to classify musical mode: two approaches that largely viewmode as a scale

and one distributional approach that focuses on its melodic character. We find

that this latter approach can still determinemode fairly accurately even when all

pitch information has been discarded. However, this only really works when the

mode is segmented in the ‘right’ way: in units corresponding to textual units such

as syllables and words.

The smaller units intowhichmusic can be decomposed, here calledmotifs, form

the second thread in this dissertation. In the case of plainchantmelodies, variable-

length motifs corresponding to textual units proved fruitful, but fixed-length

motifs can also be helpful when studying rhythmic data. We show how plotting

all motifs of three successive temporal intervals in a so-called rhythm triangle

effectively highlights rhythmical structures in music and animal vocalizations.

It motivates a novel measure of isochronicity—how steady, pulse-like a rhythm

is—that generalizes a more commonly usedmeasure (the nPVI). Extending these

ideas to melodies, we propose to visualize motifs of three successive notes (or two

intervals) in what might be called amelody square to help identify common and

rare melodic patterns.

The third thread in this dissertation concerns the shapes of melodies. How can

one best represent—measure, if you like—melodic contour? It turns out that one

can efficiently describe variability in contour shapes using cosine functions as they

closely approximate the principal components of melodies. This leads to a new

contour representation, cosine contours, effectively representing the melodic shape

using a discrete cosine transform. Cosine contours give a continuous description of

contour, while most previous work describes shapes in a discrete fashion, using
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a fixed set of contour types. We ask if such discrete typologies can accurately

describe the variability in contour shape. Rephrasing this as a clustering problem,

we propose a way tomeasure the presence of statistical modes—but find none.

This suggests that melodic phrase contours do not cluster into separate types

and that discrete typologies may not provide the most appropriate description of

melodic contour.

This dissertation ends with a somewhat dissonant finale. Whereas earlier

chapters are distant readings of large music collections, the final chapter is a close

reading of a single piece: a rarity. Instead of analyzing ‘informal’ music by formal

means, we now use formal means to understand the ‘formal’ music of Arvo Pärt.

His music is well known to be constructed according to precise mathematical

rules, andwe attempt to reconstruct the full score of his piece Summa using formal

procedures. This formalizationmakes the constructions that possibly underlie the

composition completely transparent. It also highlights the vast range of musical

diversity, from a formal composition to a simple folk song. To our understanding

that diversity, this dissertation makes only modest contributions. But, if this

dissertation inspires new research or newmusic, its hopes have been fulfilled.
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Samenvatting
Muziek meten
Over modi, motieven en melodieën

Demens is eenmuzikale soort: we zingen, dansen, spelen of luisteren, ongeacht

waar we vandaan komen. Om te begrijpen waarom dat zo is, bestuderenmuziek-

wetenschappers de grote rijkdom aanmuziektradities die je over de hele wereld

kunt vinden. Door muziektradities te vergelijken, kun je bijvoorbeeld proberen

te achterhalen welke eigenschappen in veel tradities voorkomen, of welke eigen-

schappen juist heel zeldzaamzijn. Maar omdat tedoen,moet je die eigenschappen

wel op een of andere manier kunnenmeten. En dat is demotivatie achter dit proef-

schrift: kunnenwe computationele methoden ontwikkelen ommuziektradities

te meten en ze zo te kunnen vergelijken? In een reeks studies, afgewisseld met

lichtere interludes, wordenmanieren besproken ommodi in gezangen,melodische

en ritmischemotieven, en de vormen vanmelodieën te meten, om af te sluitenmet

een complexe zeldzaamheid: de muziek van Arvo Pärt.

In dit proefschrift analyseren we voornamelijk bladmuziek, uit een aantal ver-

schillende tradities. In het Catafolk-project bundelen we bestaande corpora, met

voornamelijk Duitse, Chinese en inheems Noord-Amerikaanse muziek, tot een

crosscultureel corpus. We presenteren ook twee corpora metWesterse kerkgezan-

gen (Cantus Corpus en GregoBase Corpus), samenmet Python-software om de

muziek uit te kunnen lezen. Deze corpora gebruiken we in een aantal studies naar

kerkgezangen. We bevestigen bijvoorbeeld de bekende hypothese dat de melo-

dieën van frases doorgaans boogvormig zijn, analyserende regelmatigheid van een

specifiekemuzikale overgang en trainen een klein, recurrent neuraal taalmodel

om nieuwe, kunstmatige gezangen te componeren.

Het middelpunt is echter een studie naar de centrale organisatiestructuur van

kerkgezangen: de acht modi. Modi zijn melodietypen die het midden houden

tussen abstracte toonladders en concretemelodieën. We vergelijken verschillende

manieren om demodus van een gezang te bepalen: twee benaderingen die modus

grotendeels als toonladder beschouwen, en eenmeer gedistribueerde benadering

die het melodische karakter benadrukt. Die laatste benadering maakt het zelfs

mogelijk ommet redelijke nauwkeurigheid demodus van een gezang te bepalen,

vrijwel zonder toonhoogte-informatie te gebruiken. Het lijkt danwel belangrijk te

zijn om demelodie op de juiste manier te verdelen in eenheden die overeenkomen

met tekstuele eenheden als lettergrepen en woorden.

De kleinere eenheden waarin muziek uiteenvalt, die we hier motieven noemen,

zijn een tweede thema in dit proefschrift. In het geval van gezangen blekenmotie-

ven van variable lengte behulpzaam ommodus te bepalen, maarmotievenmet

vaste lengte kunnen nuttig zijn om ritmische data te bestuderen. In het geval van

gezangen blijkenmotieven van variable lengte behulpzaam voor modusbepaling,

maar motievenmet vaste lengte kunnen nuttig zijn om ritmische data te bestude-

ren. We laten zien hoe je ritmische structuren in zowel muziek als dierengeluiden

effectief kunt visualiseren in een ritmedriehoek. Zo’n driehoek laat alle ritmische

motieven zien, die uit drie opeenvolgende tijdsintervallen bestaan. Deze visualisa-

tie brengt ons bij een nieuwemaat voor isochroniteit—hoe gelijkmatig, puls-achtig

een ritme is—die bovendien een generalisatie is van een gangbaremaat (nPVI).

Webreidendeze ideeënookuit naarmelodieën en laten zienhoemotieven vandrie

opeenvolgende noten (twee intervallen) in eenmelodieënvierkant kunnen worden

weergegeven om zo veelvoorkomende en zeldzamemotieven uit te lichten.
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De vormen of contouren vanmelodieën zijn het derde thema in dit proefschrift.

Hoe kun je de contour van eenmelodie het beste meten? Blijkbaar kun je de va-

riatie in melodische contouren efficiënt beschrijvenmet behulp van cosinussen,

omdat die de principale componenten van een verzamelingmelodieën goed lijken

te benaderen. We stellen daarom een nieuwe contourrepresentatie voor, de cosi-

nuscontour, die de vorm van eenmelodie in wezen beschrijft aan de hand van een

discrete cosinustransformatie. Cosinuscontouren geven een continue beschrijving

van de vorm vanmelodieën, terwijl eerdere studies de vormen juist aan de hand

van discrete typen beschrijven: stijgend, dalend, boogvormig, enzovoorts. Geeft

zo’n discrete typologie een goede beschrijving van de variatie in melodievormen?

We vertalen dit naar een clusteringprobleem en stellen een methode voor om

de aanwezigheid van statistischemodi te testen—maar vinden er geen. Dit sug-

gereert dat melodievormen niet in verschillende typen uiteenvallen en dat een

discrete typologie daarommisschien niet de beste beschrijving vanmelodische

contour geeft.

Dit proefschrift eindigt met een dissonante finale. Waar in eerdere hoofdstuk-

ken door een verrekijker naar grote collecties muziek werd gekeken, wordt in

het laatste hoofdstuk juist één werk onder de loep genomen. En in plaats van

‘informele’ muziek met formele methoden te benaderen, gebruiken we nu for-

mele methoden om de ‘formele’ muziek van Arvo Pärt te bestuderen: composities

waar vaak precieze, wiskundige patronen aan ten grondslag liggen. We probe-

ren daarom om de volledige partituur van het werk Summa te reconstruerenmet

behulp van formele procedures. Zo’n formalisering legt de mogelijke construc-

tie bloot waar de compositie omheen is gebouwd. Het illustreert ook weer de

reikwijdte van muziek: van formele composities tot eenvoudige deuntjes. Dit

proefschrift draagt maar een klein steentje bij aan het begrip van die muzikale

diversiteit, maar hopelijk prikkelt het voldoende om nieuw onderzoek te inspire-

ren—of nieuwemuziek te laten klinken.
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